Apply a regularized (generalized) linear model in parallel across each response $y$ in an outcome or mediation model. This can be helpful when we have many mediators or pretreatment variables, making the input high-dimensional.
Value
model An object of class model
with estimator, predictor, and
sampler functions associated wtih a lienar model.
Examples
exper <- demo_joy() |>
mediation_data("PHQ", "treatment", starts_with("ASV"))
multimedia(exper, glmnet_model(lambda = 1)) |>
estimate(exper)
#> [Multimedia Analysis]
#> Treatments: treatment
#> Outcomes: PHQ
#> Mediators: ASV1, ASV2, ...
#>
#> [Models]
#> mediation: A fitted lm_model().
#> outcome: A fitted glmnet_model().
multimedia(exper, glmnet_model(lambda = 1), glmnet_model()) |>
estimate(exper)
#> [Multimedia Analysis]
#> Treatments: treatment
#> Outcomes: PHQ
#> Mediators: ASV1, ASV2, ...
#>
#> [Models]
#> mediation: A fitted glmnet_model().
#> outcome: A fitted glmnet_model().
# example with another dataset
exper <- demo_spline(tau = c(2, 1)) |>
mediation_data(starts_with("outcome"), "treatment", "mediator")
multimedia(exper, glmnet_model(lambda = 0.1)) |>
estimate(exper)
#> [Multimedia Analysis]
#> Treatments: treatment
#> Outcomes: outcome_1, outcome_2
#> Mediators: mediator
#>
#> [Models]
#> mediation: A fitted lm_model().
#> outcome: A fitted glmnet_model().