class: title `\(\def\Dir{\text{Dir}}\)` `\(\renewcommand{\exp}[1]{\operatorname{exp}\left(#1\right)}\)` `\(\def\Mult{\text{Mult}}\)` `\(\def\*#1{\mathbf{#1}}\)` `\(\def\m#1{\boldsymbol{#1}}\)` `\(\def\Unif{\text{Unif}}\)` `\(\def\win{\tilde{w}_{\text{in}}}\)` `\(\def\reals{\mathbb{R}}\)` `\(\def\simplex{\Delta}\)` `\(\def\*#1{\mathbf{#1}}\)` `\(\def\m#1{\boldsymbol{#1}}\)` `\(\def\PD{\mathrm{PD}}\)` `\(\def\FDP{\mathrm{FDR}}\)` `\(\newcommand\mbb[1]{\mathbb{#1}}\)` `\(\newcommand\mbf[1]{\mathbf{#1}}\)` `\(\def\mc#1{\mathcal{#1}}\)` `\(\def\mrm#1{\mathrm{#1}}\)` `\(\def\absarg#1{\left|#1\right|}\)` <div style = "position:fixed; visibility: hidden"> `$$\require{color}\definecolor{myred}{rgb}{0.705882352941177, 0.341176470588235, 0.36078431372549}$$` `$$\require{color}\definecolor{mygreen}{rgb}{0.352941176470588, 0.541176470588235, 0.501960784313725}$$` </div> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { Macros: { myred: ["{\\color{myred}{#1}}", 1], mygreen: ["{\\color{mygreen}{#1}}", 1] }, loader: {load: ['[tex]/color']}, tex: {packages: {'[+]': ['color']}} } }); </script> <style> .myred {color: #B4575C;} .mygreen {color: #5A8A80;} </style> ## Microbiome Intervention Analysis with `mbtransfer` <div id="subtitle"> Kris Sankaran <br/> (w/ Pratheepa Jeganathan) 06 | August | 2024 <br/> Lab: <a href="https://go.wisc.edu/pgb8nl">go.wisc.edu/pgb8nl</a> <br/> </div> <div id="subtitle_right"> Advanced Methods for Microbiome Data Analysis<br/> Joint Statistical Meetings</br> Slides: <a href="https://go.wisc.edu/h5ow0o">go.wisc.edu/h5ow0o</a><br/> Paper: <a href=" https://go.wisc.edu/5x8k89">go.wisc.edu/5x8k89</a> </div> <!-- 20 minute talk --> --- ### Motivation: Interaction in Dynamic Communities Microbiome communities are dynamic [1; 2]. More precise knowledge of how it changes can guide microbiome design [3; 4]. <img src="figure/curtis-opening.png"/> <span style="font-size: 18px;"> John Curtis was a UW - Madison Botany professor who studied how forest ecosystems change in response to environmental pressures (and created the Bray-Curtis distance). Figure from [5]. </span> --- ### Interventions To disentangle these dynamics, longitudinal experimental designs with natural or induced interventions have gained popularity. The questions are: 1. **Who**: Which taxa are affected by an intervention? 1. **When**: Are the effects immediate? Lagged? Do they persist? 1. **Why**: Are there host factors that mediate the effect? <img src="figure/motivation.png"/> <span style="font-size: 18px;"> Examples of microbiomes responding to environmental shifts, discussed in our supplement S2 [6]. </span> --- class: middle .center[ ## Approach ] --- ### Ingredients 1. **Transfer Functions** [7]: Model intervention and interaction effects across time horizons using a high-dimensional linear model. 1. **Mirror Statistics** [8]: Use agreement across data splits to allow false discovery rate-controlled inference of intervention effects. .center[ <img src="figure/approach.png" width=800/> ] --- ### Transfer Functions .pull-left[ Classical transfer function models are autoregressive models [7]: `$$y_{t} = \sum_{p = 1}^{P} A_{p} y_{t - p} + \sum_{q = 0}^{Q - 1} B_{q}w_{t - q} + \epsilon_{t}$$` where `\(y_{t}\)` is the series of interest and `\(w_{t}\)` encodes the intervention. Unlike gLV models [22; 23], they can model lagged intervention effects. ] .pull-right[ <img src="figure/pulse.png" width="340" style="display: block; margin: auto;" /> <span style="font-size: 18px;"> In Box and Tiao [7], `\(y_{t}\)` are ozone concentrations and `\(w_{t}\)` are new regulations. </span> ] --- ### Transfer Functions for Microbial Communities We estimate a separate transfer function model `\(f_{j}\)` for each taxon: `$$\mathbf{y}_{t}^{(i)} = \mathbf{f}\left(\mathbf{Y}^{(i)}_{t - 1}, \mathbf{W}^{(i)}_{t}, \mathbf{z}^{(i)} \right) + \mathbf{\epsilon}_{t}^{(i)}$$` For each coordinate, we use a regularized linear boosting model [9] with candidate interactions found in an initial prescreen [10]. |Variable| Interpretation | |--|---| | `\(\mathbf{y}_{t}^{(i)} \in \reals^{J}\)` | The microbiome community profiles in subject `\(i\)` at time `\(t\)`. | | `\(\mathbf{Y}^{(i)}_{t - 1} \in \reals^{J \times P}\)` | The length `\(P\)` memory of the `\(i^{th}\)` subject's community. | | `\(\mathbf{W}^{(i)}_{t - 1} \in \reals^{D \times Q}\)` | The length `\(Q\)` memory of the `\(i^{th}\)` subject's interventions. | | `\(\mathbf{z}^{(i)} \in \reals^{S}\)` | Subject-level covariates that can interact with `\(\mathbf{Y}_{t - 1}^{(i)}\)` and `\(\mathbf{W}_{t}^{(i)}\)`.| --- ### Mirror Statistics 1. Which taxa `\(j\)` are affected by the external perturbation, and how long do the perturbations last? 2. We can use the approach of Dai et al. [8] to gauge statistical significance of effects that are not available in model coefficients. .center[ <img src="figure/trajectories_significance.png" width=700/> ] --- ### General Approach: Mirror Statistics Split the data into `\(\mathcal{D}^{(1)} = \left(\mathbf{X}^{(1)}, \mathbf{y}^{(1)}\right)\)` and `\(\mathcal{D}^{(2)} = \left(\mathbf{X}^{(2)}, \mathbf{y}^{(2)}\right)\)` and check for agreement in the estimates `\(\hat{\mathbf{\beta}}^{(1)}\)` and `\(\hat{\mathbf{\beta}}^{(2)}\)` across splits. <img src="figure/mirror-explanation1.png" width=800/> --- ### Test Statistic for Linear Model To detect whether `\(\beta_{j} \neq 0\)`, we can use the statistic: .center[ `\(M_{j} = \text{sign}\left(\hat{\beta}^{(1)}_{j}\hat{\beta}^{(2)}_{j}\right)\left[\left|\hat{\beta}_{j}^{(1)}\right| + \left|\hat{\beta}_{j}^{(2)}\right|\right]\)` ] <img src="figure/mirror-explanation1.png" width=800/> --- ### FDR Estimation To choose a threshold `\(\tau\)`, estimate the false discovery rate: .center[ `$$\widehat{\FDP}\left(\tau\right) = \frac{\left|\{j : M_{j} < -\tau\}\right|}{\left|\left\{j : M_{j} > \tau\right\}\right|}$$` ] <img src="figure/mirror-explanation2.png" width=800/> --- ### FDR Estimation To choose a threshold `\(\tau\)`, estimate the false discovery rate: .center[ `$$\widehat{\FDP}\left(\tau\right) = \frac{\left|\{j : M_{j} < -\tau\}\right|}{\left|\left\{j : M_{j} > \tau\right\}\right|}$$` ] .pull-left[ <img src="figure/mirror-explanation2.png" width=500/> ] .pull-right[ Assumptions: * Symmetry of `\(M_{j}\)` under the null * Independence of `\(M_{j}\)` ] --- ### Partial Dependence For transfer function models, we need an alternative to `\(\beta_{j}\)`. We estimate the partial dependence [9; 11] of the intervention `\(\mathbf{W}_{t}\)` across time horizons. .center[ `$$\PD_{j}^{(s)} = \frac{1}{\absarg{\mathcal{D}^{(s)}}}\sum_{d_{t}^{(i)} \in \mathcal{D}^{(s)}}\left[\myred{\hat{f}_{j}^{(s)}\left(\*Y^{(i)}_{t}, \*1_{Q}, \*z^{(i)}\right)} - \mygreen{\hat{f}_{j}^{(s)}\left(\*Y^{(i)}_{t}, \*0_{Q}, \*z^{(i)}\right)}\right].$$` <img src="figure/pd-1.png" width=650/> ] --- ### Partial Dependence For transfer function models, we need an alternative to `\(\beta_{j}\)`. We estimate the partial dependence [9; 11] of the intervention `\(\mathbf{W}_{t}\)` across time horizons. .center[ `$$\PD_{j}^{(s)} = \frac{1}{\absarg{\mathcal{D}^{(s)}}}\sum_{d_{t}^{(i)} \in \mathcal{D}^{(s)}}\left[\myred{\hat{f}_{j}^{(s)}\left(\*Y^{(i)}_{t}, \*1_{Q}, \*z^{(i)}\right)} - \mygreen{\hat{f}_{j}^{(s)}\left(\*Y^{(i)}_{t}, \*0_{Q}, \*z^{(i)}\right)}\right].$$` <img src="figure/pd-2.png" width=650/> ] --- ### Partial Dependence For transfer function models, we need an alternative to `\(\beta_{j}\)`. We estimate the partial dependence [9; 11] of the intervention `\(\mathbf{W}_{t}\)` across time horizons. .center[ `$$\PD_{j}^{(s)} = \frac{1}{\absarg{\mathcal{D}^{(s)}}}\sum_{d_{t}^{(i)} \in \mathcal{D}^{(s)}}\left[\myred{\hat{f}_{j}^{(s)}\left(\*Y^{(i)}_{t}, \*1_{Q}, \*z^{(i)}\right)} - \mygreen{\hat{f}_{j}^{(s)}\left(\*Y^{(i)}_{t}, \*0_{Q}, \*z^{(i)}\right)}\right].$$` <img src="figure/pd-3.png" width=650/> ] --- ### Partial Dependence Mirrors Our definition uses `\(\mathrm{PD}_{j}^{(s)}\)` in place of `\(\hat{\beta}_{j}^{(s)}\)` from the usual definition. `\begin{align*} M_{j} = \text{sign}\left(\PD_{j}^{(1)}\PD_{j}^{(2)}\right)\left[\absarg{\PD_{j}^{(1)}} + \absarg{\PD_{j}^{(2)}}\right] \end{align*}` --- class: middle .center[ ## Experiments ] --- ### Evaluation Criteria 1. **Forecasting**: How do methods compare in their ability to predict microbial community response to interventions? 1. **Selection**: How do methods compare in their FDR control and power in detecting affected taxa? .center[ <img src="figure/inference-pred.png" width=850/> ] --- ### Simulation Parameters <img src="figure/dimensionality.png" width=50/> Number of (nonnull) taxa: How do dimensionality and proportion of nulls influence performance? <img src="figure/normal_curve.png" width=80/> Signal strength: How are inference and forecasting are affected by intervention strength? <img src="figure/transform.png" width=40/> Normalization strategy: We can apply methods to either raw or transformed data. <img src="figure/phylo.png" width=50/> Phylogenetic correlation: We include correlated taxa that reflect shared evolutionary ancestry.<br/> <img src="figure/reads.png" width=90/> Sequencing depth: In a typical experiment, not all samples are sequenced to the same read depth. --- ### Generative Mechanism Negative binomial models often fit microbiome data well [12; 13; 14]. We use an autoregressive version: `$$\mathbf{y}_{t}^{(i)}\vert\theta_{t}^{(i)},\mathbf{\varphi},d^{(i)}\sim\text{NB}\left(d^{(i)}\exp{\theta_{t}^{(i)}},\mathbf{\varphi}\right)\\\theta_{t}^{(i)}=\sum_{p=1}^{P}A_{p}\theta_{t-p}^{(i)}+\sum_{q=1}^{Q}\left(B_{q}+C_{q}\odot \mathbf{z}^{(i)}\right)\mathbf{w}_{t-q}^{i}+\mathbf{\epsilon}_{t}^{(i)}\\d^{(i)}\sim\Gamma\left(10,\lambda\right)\\\epsilon_{t}^{(i)}\sim\mathcal{N}\left(0,\Sigma\left(\alpha\right)\right)$$` <!-- \Sigma_{ij}\left(\alpha\right) = \exp{}$ --> --- ### Comparison Forecasting 1. `MDSINE2` [15; 16; 17]: A Bayesian nonparametric negative binomial autoregressive model for discovering taxonomic interactions. 1. `fido` [18; 19]: An extended multinomial regression model that we adapted to forecasting. Selection 1. `DESeq2` [20] with main and interaction effects for `\(\mathbf{w}_{t}\)` and `\(\mathbf{z}\)`. 1. Two-Sample `\(t\)`-test comparing the four `\(\mathbf{y}_{t}\)` for the first four `\(t\)` after `\(\mathbf{w}_{t} = 1\)` and with all other `\(\mathbf{y}_{t}\)` --- ### Prediction Performance: `\(\alpha = 0.1, \lambda = 0.1\)` <img src="figure/simulation_results_config1.png" width=900/> --- ### Prediction Performance: `\(\alpha = 10, \lambda = 0.1\)` <img src="figure/simulation_results_config3.png" width=900/> --- ### All Settings <img src="figure/Fig4.png" width=1100/> --- ### Power and FDR <img src="figure/Fig6.png" width=900/> --- class: middle .center[ ## Data Analysis ] --- ### Data Description David et al. [21] investigated short-term change in microbiome composition and function in response to diet perturbations. .pull-three-quarters-left[ * 20 participants observed for 15 days. * 15 days = 4 pre + 5 intervention + 6 post. * Specially prepared animal- (10 subjects) and plant-based (10 subjects) diets. ] .pull-three-quarters-right[ <img src="figure/diet-study.png" width=300/> ] --- ### In- and Out-of-Sample Prediction <img src="figure/Fig7.png" width=750/><br/> <span style="font-size: 18px;"> Forecasting performance across subsets of taxa and time lags. Out-of-sample performance is strongest among highly abundant taxa (top row) and short-term time lags (left column). </span> --- ### Mirror Statistics <img src="figure/S1_Fig12.png"/> <span style="font-size: 18px;"> Boxplots of `\(M_{j}\)` that are larger than zero give evidence for significant intervention effects. </span> --- ### Estimates and Data For each taxon, we can compare the partial dependence profiles when the diet intervention is or is not applied. <img src="figure/Fig8.png" width=900/> <span style="font-size: 18px;"><br/> Estimates `\(\mathrm{PD}_{j}\)` (top panel) and underlying data (bottom panel) for taxa significant effects. </span> --- ### Takeaways `mbtransfer` supports FDR-controlled inference across multiple time horizons for models of dynamic microbiome data. .pull-three-quarters-left[ <img src="figure/Fig1.png" width=700/> ] .pull-three-quarters-right[ [Paper](https://go.wisc.edu/5x8k89)<br/> <img src="figure/qr-paper.png" width=80/> <br/> <br/> <br/> [Package](https://krisrs1128.github.io/mbtransfer)<br/> <img src="figure/qr-package.png" width=80/> ] --- class: background-rivers .center[ ### Thank you! ] * Collaborators: Pratheepa Jeganathan (McMaster University) * Lab Members: Margaret Thairu, Hanying Jiang, Shuchen Yan, Yuliang Peng, Kai Cui, Sam Merten, and Kobe Uko * Funding: NIGMS R01GM152744 --- class: reference ### References [1] L. Dethlefsen et al. "Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation". In: _Proceedings of the National Academy of Sciences_ 108.supplement_1 (Sep. 2010), p. 4554–4561. ISSN: 1091-6490. DOI: [10.1073/pnas.1000087107](https://doi.org/10.1073%2Fpnas.1000087107). URL: [http://dx.doi.org/10.1073/pnas.1000087107](http://dx.doi.org/10.1073/pnas.1000087107). [2] G. K. Gerber. "The dynamic microbiome". In: _FEBS Letters_ 588.22 (Feb. 2014), p. 4131–4139. ISSN: 1873-3468. DOI: [10.1016/j.febslet.2014.02.037](https://doi.org/10.1016%2Fj.febslet.2014.02.037). URL: [http://dx.doi.org/10.1016/j.febslet.2014.02.037](http://dx.doi.org/10.1016/j.febslet.2014.02.037). [3] In: _Nature Microbiology_ 9.7 (Jul. 2024), p. 1633–1633. ISSN: 2058-5276. DOI: [10.1038/s41564-024-01763-1](https://doi.org/10.1038%2Fs41564-024-01763-1). URL: [http://dx.doi.org/10.1038/s41564-024-01763-1](http://dx.doi.org/10.1038/s41564-024-01763-1). [4] S. Tian et al. "Making gut microbiomes from scratch". In: _Cell Host & Microbe_ 30.11 (Nov. 2022), p. 1508–1509. ISSN: 1931-3128. DOI: [10.1016/j.chom.2022.10.005](https://doi.org/10.1016%2Fj.chom.2022.10.005). URL: [http://dx.doi.org/10.1016/j.chom.2022.10.005](http://dx.doi.org/10.1016/j.chom.2022.10.005). [5] J. T. Curtis. _The vegetation of Wisconsin-ordination of plant communities_. Chapter 7. Madison, WI: University of Wisconsin Press, Dec. 1959. [6] K. Sankaran et al. "mbtransfer: Microbiome intervention analysis using transfer functions and mirror statistics". In: _PLOS Computational Biology_ 20.6 (Jun. 2024). Ed. by N. Nagarajan, p. e1012196. ISSN: 1553-7358. DOI: [10.1371/journal.pcbi.1012196](https://doi.org/10.1371%2Fjournal.pcbi.1012196). URL: [http://dx.doi.org/10.1371/journal.pcbi.1012196](http://dx.doi.org/10.1371/journal.pcbi.1012196). [7] G. E. Box et al. "Intervention analysis with applications to economic and environmental problems". In: _Journal of the American Statistical association_ 70.349 (1975), pp. 70-79. [8] C. Dai et al. "False Discovery Rate Control via Data Splitting". In: _Journal of the American Statistical Association_ 118.544 (May. 2022), p. 2503–2520. ISSN: 1537-274X. DOI: [10.1080/01621459.2022.2060113](https://doi.org/10.1080%2F01621459.2022.2060113). URL: [http://dx.doi.org/10.1080/01621459.2022.2060113](http://dx.doi.org/10.1080/01621459.2022.2060113). [9] J. H. Friedman. "Greedy function approximation: A gradient boosting machine." In: _The Annals of Statistics_ 29.5 (Oct. 2001). ISSN: 0090-5364. DOI: [10.1214/aos/1013203451](https://doi.org/10.1214%2Faos%2F1013203451). URL: [http://dx.doi.org/10.1214/aos/1013203451](http://dx.doi.org/10.1214/aos/1013203451). [10] G. Thanei et al. "The xyz algorithm for fast interaction search in high-dimensional data". In: _Journal of Machine Learning Research_ 19.37 (2018), pp. 1-42. URL: [http://jmlr.org/papers/v19/16-515.html](http://jmlr.org/papers/v19/16-515.html). [11] P. Biecek. "DALEX: Explainers for Complex Predictive Models in R". In: _Journal of Machine Learning Research_ 19.84 (2018), pp. 1-5. URL: [http://jmlr.org/papers/v19/18-416.html](http://jmlr.org/papers/v19/18-416.html). [12] X. Zhang et al. "Negative binomial mixed models for analyzing microbiome count data". In: _BMC Bioinformatics_ 18.1 (Jan. 2017). ISSN: 1471-2105. DOI: [10.1186/s12859-016-1441-7](https://doi.org/10.1186%2Fs12859-016-1441-7). URL: [http://dx.doi.org/10.1186/s12859-016-1441-7](http://dx.doi.org/10.1186/s12859-016-1441-7). [13] S. Jiang et al. "A Bayesian zero-inflated negative binomial regression model for the integrative analysis of microbiome data". In: _Biostatistics_ 22.3 (Dec. 2019), p. 522–540. ISSN: 1468-4357. DOI: [10.1093/biostatistics/kxz050](https://doi.org/10.1093%2Fbiostatistics%2Fkxz050). URL: [http://dx.doi.org/10.1093/biostatistics/kxz050](http://dx.doi.org/10.1093/biostatistics/kxz050). --- class: reference ### References [14] A. K. Mishra et al. "Negative binomial factor regression with application to microbiome data analysis". In: _Statistics in Medicine_ 41.15 (Apr. 2022), p. 2786–2803. ISSN: 1097-0258. DOI: [10.1002/sim.9384](https://doi.org/10.1002%2Fsim.9384). URL: [http://dx.doi.org/10.1002/sim.9384](http://dx.doi.org/10.1002/sim.9384). [15] V. Bucci et al. "MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses". In: _Genome Biology_ 17.1 (Jun. 2016). ISSN: 1474-760X. DOI: [10.1186/s13059-016-0980-6](https://doi.org/10.1186%2Fs13059-016-0980-6). URL: [http://dx.doi.org/10.1186/s13059-016-0980-6](http://dx.doi.org/10.1186/s13059-016-0980-6). [16] T. Gibson et al. "Robust and Scalable Models of Microbiome Dynamics". In: _Proceedings of the 35th International Conference on Machine Learning_. Ed. by J. Dy and A. Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 1763-1772. URL: [https://proceedings.mlr.press/v80/gibson18a.html](https://proceedings.mlr.press/v80/gibson18a.html). [17] T. E. Gibson et al. "Microbial dynamics inference at ecosystem-scale". (Dec. 2021). DOI: [10.1101/2021.12.14.469105](https://doi.org/10.1101%2F2021.12.14.469105). URL: [http://dx.doi.org/10.1101/2021.12.14.469105](http://dx.doi.org/10.1101/2021.12.14.469105). [18] J. D. Silverman et al. "Dynamic linear models guide design and analysis of microbiota studies within artificial human guts". (Apr. 2018). DOI: [10.1101/306597](https://doi.org/10.1101%2F306597). URL: [http://dx.doi.org/10.1101/306597](http://dx.doi.org/10.1101/306597). [19] J. D. Silverman et al. "Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes". In: _Journal of Machine Learning Research_ 23.7 (2022), pp. 1-42. URL: [http://jmlr.org/papers/v23/19-882.html](http://jmlr.org/papers/v23/19-882.html). [20] M. I. Love et al. "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2". In: _Genome Biology_ 15.12 (Dec. 2014). ISSN: 1474-760X. DOI: [10.1186/s13059-014-0550-8](https://doi.org/10.1186%2Fs13059-014-0550-8). URL: [http://dx.doi.org/10.1186/s13059-014-0550-8](http://dx.doi.org/10.1186/s13059-014-0550-8). [21] L. A. David et al. "Diet rapidly and reproducibly alters the human gut microbiome". In: _Nature_ 505.7484 (Dec. 2013), p. 559–563. ISSN: 1476-4687. DOI: [10.1038/nature12820](https://doi.org/10.1038%2Fnature12820). URL: [http://dx.doi.org/10.1038/nature12820](http://dx.doi.org/10.1038/nature12820). [22] D. Gonze et al. "Microbial communities as dynamical systems". In: _Current Opinion in Microbiology_ 44 (Aug. 2018), p. 41–49. ISSN: 1369-5274. DOI: [10.1016/j.mib.2018.07.004](https://doi.org/10.1016%2Fj.mib.2018.07.004). URL: [http://dx.doi.org/10.1016/j.mib.2018.07.004](http://dx.doi.org/10.1016/j.mib.2018.07.004). [23] T. A. Joseph et al. "Compositional Lotka-Volterra describes microbial dynamics in the simplex". In: _PLOS Computational Biology_ 16.5 (May. 2020). Ed. by V. Dakos, p. e1007917. ISSN: 1553-7358. DOI: [10.1371/journal.pcbi.1007917](https://doi.org/10.1371%2Fjournal.pcbi.1007917). URL: [http://dx.doi.org/10.1371/journal.pcbi.1007917](http://dx.doi.org/10.1371/journal.pcbi.1007917). --- ### Phylogenetic Covariance .center[ <img src="figure/phylogenetic_covariance.png" width=700/> ] --- ### Example Trajectories .center[ <img src="figure/Fig5.png" width=1000/> ] --- ### Computation Time .center[ <img src="figure/S1_Fig7.png" width=1000/> ] --- ### Transfer Functions .pull-left[ 1. The pattern of autoregressive coefficients determines `\(y_{t}\)`'s response to "pulse" and "step" interventions. 1. Note that, unlike standard generalized Lotka-Volterra models [22; 23], they can model lagged intervention effects. ] .pull-right[ <img src="figure/intervention-analysis.png" width="400" style="display: block; margin: auto;" /> ] --- ### Generative Mechanism .center[ <img src="figure/simulated_data.png" width=800/><br/> ] <span style="font-size: 18px"> Taxonomic abundances in the simulated negative binomial data, transformed to taxon-specific quantiles. The intervention windows are surrounded in red. Only the top three rows have true intervention effects. </span> --- ### Figure Attributions math function by Ralf Schmitzer from <a href="https://thenounproject.com/browse/icons/term/math-function/" target="_blank" title="math function Icons">Noun Project</a> (CC BY 3.0) biological tree by Leslie Coonrod from <a href="https://thenounproject.com/browse/icons/term/biological-tree/" target="_blank" title="biological tree Icons">Noun Project</a> (CC BY 3.0) standard normal distribution by Nick Taras from <a href="https://thenounproject.com/browse/icons/term/standard-normal-distribution/" target="_blank" title="standard normal distribution Icons">Noun Project</a> (CC BY 3.0) microbiome by Stefanie Peschel from <a href="https://thenounproject.com/browse/icons/term/microbiome/" target="_blank" title="microbiome Icons">Noun Project</a> (CC BY 3.0)