The definition of tidy data, and why it’s often helpful for visualization._
table1
# A tibble: 6 × 4
country year cases population
<chr> <int> <int> <int>
1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583
It is easy to visualize the tidy dataset.
ggplot(table1, aes(x = year, y = cases, col = country)) +
geom_point() +
geom_line()
Below are three non-tidy versions of the same dataset. They are representative of more general classes of problems that may arise,
table4a # cases
# A tibble: 3 × 3
country `1999` `2000`
* <chr> <int> <int>
1 Afghanistan 745 2666
2 Brazil 37737 80488
3 China 212258 213766
table4b # population
# A tibble: 3 × 3
country `1999` `2000`
* <chr> <int> <int>
1 Afghanistan 19987071 20595360
2 Brazil 172006362 174504898
3 China 1272915272 1280428583
table2
# A tibble: 12 × 4
country year type count
<chr> <int> <chr> <int>
1 Afghanistan 1999 cases 745
2 Afghanistan 1999 population 19987071
3 Afghanistan 2000 cases 2666
4 Afghanistan 2000 population 20595360
5 Brazil 1999 cases 37737
6 Brazil 1999 population 172006362
7 Brazil 2000 cases 80488
8 Brazil 2000 population 174504898
9 China 1999 cases 212258
10 China 1999 population 1272915272
11 China 2000 cases 213766
12 China 2000 population 1280428583
rate
is being
used to store both the population and case count variables.table3
# A tibble: 6 × 3
country year rate
* <chr> <int> <chr>
1 Afghanistan 1999 745/19987071
2 Afghanistan 2000 2666/20595360
3 Brazil 1999 37737/172006362
4 Brazil 2000 80488/174504898
5 China 1999 212258/1272915272
6 China 2000 213766/1280428583
The trouble is that this variable has to be stored as a character; otherwise, we lose access to the original population and case variable. But, this makes the plot useless.
ggplot(table3, aes(x = year, y = rate)) +
geom_point() +
geom_line(aes(group = country))
The next few lectures provide tools for addressing these three problems.
For attribution, please cite this work as
Sankaran (2023, Jan. 10). STAT 436 (Spring 2023): Tidy Data. Retrieved from https://krisrs1128.github.io/stat436_s23/website/stat436_s23/posts/2022-12-27-week02-01/
BibTeX citation
@misc{sankaran2023tidy, author = {Sankaran, Kris}, title = {STAT 436 (Spring 2023): Tidy Data}, url = {https://krisrs1128.github.io/stat436_s23/website/stat436_s23/posts/2022-12-27-week02-01/}, year = {2023} }