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Abstract Spatially resolved transcriptomics (ST) measures gene expression along with the spatial coordinates of the mea-
surements. The analysis of ST data involves significant computation complexity. In this work, we propose gene expression
dimensionality reduction algorithm that retains spatial structure. We combine the wavelet transformation with matrix factorization
to select spatially-varying genes. We extract a low-dimensional representation of these genes. We consider Empirical Bayes
setting, imposing regularization through the prior distribution of factor genes. Additionally, We provide visualization of extracted
representation genes capturing the global spatial pattern. We illustrate the performance of our methods by spatial structure
recovery and gene expression reconstruction in simulation. In real data experiments, our method identifies spatial structure
of gene factors and outperforms regular decomposition regarding reconstruction error. We found the connection between the
fluctuation of gene patterns and wavelet technique, providing smoother visualization. We develop the package and share the
workflow generating reproducible quantitative results and gene visualization. The package is available at GitHub.
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Introduction
Spatial resolved transcriptomics (ST) is a technology measuring spatial variation in gene expression. Different tech-
nological platforms support different genome coverage and spatial resolution (tissue-level measurement to subcellular
measurement). Examples of ST platforms include Spatial Transcriptomics [Ståhl et al., 2016, Xia et al., 2019], 10x
Genomics Visium, Slide-seq [Rodriques et al., 2019], sci-Space [Srivatsan et al., 2021], and MERFISH [Chen et al.,
2015]. Spatial transcriptomics allows visualization and quantitative analysis of the transcriptome with spatial reso-
lution in individual tissue sections. A series of studies combining gene expression and spatial information has been
brought to generate new insight in biological analysis [Kuppe et al., 2020, Shah et al., 2016, Berglund et al., 2018].
Quantification of gene expression has wide applications in transcriptomics. Understanding the spatial distribution of
gene expression has helped to answer fundamental questions in developmental biology [Asp et al., 2019, Rödelsperger
et al., 2021], cancer [Thrane et al., 2018, Moncada et al., 2020], and neuroscience [Moffitt et al., 2016, Close et al.,
2021]. Two widely-used methods for gene expression quantification are fluorescent in situ hybridization (FISH) and
next-generation sequencing.
While these approaches have been made to measure gene expression while preserving spatial information, there are
statistical challenges in analyses combining the gene and spatial information. Specifically, gene dimensionality reduction
guided by spatial information is still an active area of study. In this work, we conduct a dimensionality reduction on
spatially varying gene data. After transformation, gene expression over locations is a square matrix, which allows us
to view it as an image. Therefore, tools from image processing can be adapted – our method incorporates spatial
information by wavelet transformation, a multi-scale analysis decompose sequence into orthonormal series. We apply
wavelet transformation for each gene expression over locations. This is a common technique in denoising the image. We
thus apply techniques analogous to image analysis. We evaluate performance using reconstruction error and comparing
resulting visualizations. Our analysis pipeline build from off-the-shelf tools, and code is available for reproducing our
results. We also attach visualizations in our pipeline, giving example interpretations of intermediate result.
A natural idea in spatial transcriptomic analysis is to identify gene types across spatial locations [Abu-Jamous and
Kelly, 2018]. For example, in clustering the representations in each cluster achieve dimensionality reduction under
the assumption that genes within one cluster have the same type. A parallel technique is clustering based on cell
type instead. General clustering methods can be combined into more sophisticated pipelines tailored toward spatial
single-cell analysis. SC3 [Kiselev et al., 2017] is an ensemble clustering method. It calculates distance matrices across
cell locations using the Euclidean distance, then applies spectral clustering, and assigns membership [Kiselev et al.,
2018]. To identify the cell type in each cluster, one can perform differential expression analysis between all pairs of
clusters. scGeneFit uses a label-aware compression method to find marker genes [Dumitrascu et al., 2021]. Given
the cell-by-gene expression matrix and cell clustering membership, scGeneFit maps cells to lower-dimensional space
where cells within the same cluster are closer. For gene dimensionality reduction, [Zhu and Sabatti, 2020] constructs a
neighborhood graph from the spatial coordinates, then applies a graph-based feature selection procedure to determine
spatially varying genes. They also provide the option to infer a latent graph embedding for cells based on selected
genes, applying spline models to fit the gene’s expression on the latent embedding. Then they leverage the fitted
coefficients to reduce the dimensionality of each gene. [Svensson et al., 2018] proposed pipelines using mixed-effect
models incorporating spatial information. The model contains two random effect terms: a spatial variance term that
parametrizes gene expression covariance by pairwise distance between samples and a noise term that models nonspatial
variability. The model leverages efficient inference methods previously developed for linear mixed models, and it is
computationally efficient.
Our setting is closely aligned with the following recent works: [Shang and Zhou, 2022] developed SpatialPCA, applying
probabilistic PCA on ST data for dimensionality reduction. They assume data are given as a location-by-genes matrix and
construct a regression model similar to factor analysis, where the prior covariance matrix of factor genes is a distance
matrix constructed with a Gaussian kernel. [Velten et al., 2022] proposed MEFISTO, combining factor analysis with the
non-parametric framework of Gaussian processes to model spatio-temporal dependencies in the latent space. [Townes
and Engelhardt, 2021] developed nonnegative spatial factorization (NSF), combining a Gaussian process prior over
spatial locations and a Poisson or negative binomial likelihood for count data, identifying generalizable spatial patterns
of gene expression. All these works impose spatial structure on the prior of the factor genes. While these methods
offer new dimensionality reduction techniques to cluster the genes, the complex model structure and a large number of
hyperparameters introduce uncertainty and noise. Instead of imposing structural assumptions on the prior of the factor
genes, we impose structure on the factor gene itself. Our contributions are the following:

• We propose an approach, based on techniques from matrix decomposition and image signal processing to perform
gene dimensionality reduction that retains inferred spatial structure.

• We run simulations showing that wavelet-guided dimensionality reduction performs better estimation than the
singular value decomposition (SVD) under low signal-to-noise (SNR) regime.

• We perform real data experiments to identify the connection between wavelet techniques and fluctuation of the
gene expression, which would be useful in selecting spatially related genes based on reconstruction error.
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• We provide a gene extraction pipeline capturing the global information of spatially related genes. We provide
smoother visualization of gene factors via wavelet methods. We develop an R package waveST and share the
workflow generating reproducible quantitative results and gene visualization.

The diagram for workflow can be seen in Figure 1. The paper is organized in following: In Section Background we
introduce background on required techniques, including the wavelet transformation and matrix decompositions. In Sec-
tion Problem Setup, we formally define our problem under this setting, and Section Methods introduces our algorithms
and analysis pipeline. In Section Simulation, we implement simulations showing the effect of wavelet transformation
in reducing error. In Section Real Data Experiment we conduct our method on data from [Weber, 2021], showing the
reconstruction error in dimension reduction and visualization of lower-dimensional representations.

Figure 1. A summary of the proposed workflow.

Background
In this section, we will cover background of methods we used in data pre-processing and analysis.

Wavelet Transformation
Density estimation and function approximation is a fundamental problem in statistics and machine learning. Non-
parametric methods such as spline regression [Perperoglou et al., 2019], Fourier transformation [Cochran et al., 1967]
and Wavelet transformation [Nason, 2008] has been used in such scenarios.
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Consider a model with one predictor: y = f (x)+ε, where Eε2 = σ2. We want to estimate f , the trend of the function.
We assume the predictors are ordered x1 < x2 < . . .< xn. We have a signal or frequency to estimate.
Consider the Haar mother wavelet:

ψ(x) =
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integer j, k. These wavelets form orthonormal sets. We can decompose the trend as f (x) =

∑∞
j=−∞

∑∞
k=−∞ d j,kψ j,k(x),

where d j,k =
∫∞
−∞ f (x)ψ j,k(x)d x =< f ,ψ j,k > are the wavelet coefficients.

Wavelet based methods have several advantages among other non-parametric methods, especially dealing with sparse
data. One property wavelet has is localization. If a sequence has a discontinuity, this will only influence the wavelet
basis around it. In contrast, for a Fourier basis consisting of sine and cosine functions at different frequencies, every
basis element will interact with this discontinuity, hence influencing every Fourier coefficient.
The simplest discrete wavelet transformation calculates the difference and sums between each adjacent pair. Suppose
we have one vector with length n, where n is dyadic (n = 2J ). We computed dJ−1,k = y2k − y2k−1 as finest-level detail
and cJ−1,k = y2k+ y2k−1 as the finest-level averages. We have {dk} containing n/2= 2J−1 as our finest level coefficients.
To obtain the next coarsest coeffients we set:

dJ−2,ℓ = cJ−1,2ℓ − cJ−1,2ℓ−1 (1)

cJ−2,ℓ = cJ−1,2ℓ + cJ−1,2ℓ−1 (2)

We continue this procedure until j reaches one. The set of details {dk} across levels are our wavelet coefficients.
We use J to denote the scale of wavelets, with larger J we have finer scale and approximation. However, finer scale
sometimes introduces more parameters to capture minor details of the sequence (overfitting). The trade-off in choosing
J is crucial in the wavelet transformation.
Regularization and smoothing is can be used to prevent overfitting. Regularization is usually conducted by shrinking
wavelet coefficients. The concept of wavelet shrinkage was first proposed by [Donoho and Johnstone, 1994]. The
motivation behind wavelet shrinkage is straightforward. Consider empirical wavelet coefficients, the large coefficients
usually contain true signal and noise, whereas the small coefficients only contain noise. The shrinkage is often used
when the wavelet coefficients are assumed to be a sparse vector.
Wavelet shrinkage is often conducted by setting a threshold (denoted by δ) and only keeping the coefficients above
the threshold. To choose a threshold, a natural metric is the squared error between estimated function and the truth:
M̂ =
∑n

i=1( f (x i)− f̂ (x i))2 and M = EM̂ . Donoho et al. [1994] proposed a universal threshold δ = σ
p

2 log n, which
induced M ≤ O (log nσ2). Donoho and Johnstone [1995] also proposed Sure threshold based on Stein’s (1981) unbiased
risk estimator. The optimal SURE threshold can be obtained in O (n log n) operations. Donoho and Johnstone [1995]
also noted that SURE sometimes failed when the true signal coefficients are highly sparse, they proposed a hybrid
scheme called SureShrink, combining the SURE and universal thresholds, using them depending on certain situations.
The extension of wavelet methods to 2D regularly spaced data (images) and such data in higher dimensions was pro-
posed by [Mallat, 1989]. We only consider 2-D wavelet transformation since we decompose 2-D spatial gene expression
data. Suppose we have n × n matrix A where n = 2J is dyadic. A simple discrete wavelet transformation on A first
applies procedure (1) and (2) to the rows of the matrix. We then have two matrices of size n× n

2 , called H and G. Then
we apply the same procedures to both the columns of H and G, resulting in four matrices HH, GH, HG, and GG each of
size n

2 ×
n
2 . These are our finest level coefficients. HH is the local average of the original matrix used for the next level

procedure.

Factor Genes
Clustering and dimensionality reduction are widely used in genomics. In a gene-by-sample matrix, genes are often
grouped into profiles, where genes from the same profile have a similar function. Statistically, we can treat them as
correlated variables. We use the term factor genes as the principal component in our gene-by-sample data. Factor genes
compose the linear combinations of genes. We consider each gene as a variable, and we aim to find variables ( f1, . . . , fK )
such that each gene gi has form gi = a1 f1 + a2 f2 + · · · aK fK , where a j are coefficients.
Suppose we have gene(P)-by-sample(N) matrix A ∈ RN×P with sample covariance matrix S = 1

n ÃT Ã, where Ã is the
column centered A. Consider the SVD on Ã= UΛV T . Then we have SV = VΛ2. The columns of V are called eigenarrays
[Alter et al., 2000]. The first K columns of Z = AV are the factor genes. The factor genes capture the mutual underlying
information of genes.
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Empirical Bayes Matrix Factorization
Matrix Factorization is often used in capture factor genes. We have a formulation similar to [Wang and Stephens, 2021],
consider the factorization model on observed samples by gene data Y ∈ RN×P

Y = F LT + E

where F ∈ RN×K denotes the factors, L ∈ RP×K denotes the loadings for each factor, and E ∈ RN×P denotes Gaussian
noise with zero mean. Typical formulations would treat factors and loadings as fixed effects and use Maximum Likeli-
hood Estimation (MLE). In our high-dimensional setting, penalty-based regularizers are often considered. Considering
a prior for L and F under Bayesian setting has a similar effect and several advantages over adding a regularizer alone,
such as simplifying hyperparameter search and selection of the number of factors K .
One feature of empirical Bayes approaches in matrix factorization proposed by [Bishop, 1999] is that the methods
automatically select the number of factors K . In [Wang and Stephens, 2021], the author add factors with prior one at a
time, estimating priors at each step until convergence. If the computed prior of the newly added factor is almost point
mass on 0, the algorithm eliminates this factor and returns.
Following [Wang and Stephens, 2021], we consider Empirical Bayes in our setting, where we set a prior with unknown
parameters of L and F . Empirical Bayes is not strictly Bayes, since the prior parameters are directly estimated by the
MLE of the data. One example would be normal distribution DF of F and DL of L where coordinates are independent,
which is conjugate prior. We estimate parameters in DF and DL by the maximize the marginal likelihood calculated by
integral out L and F . Then we computed the posterior distribution of L and F .

Problem Setup
Consider Y ∈ RN×P , where each row represents a sample and each column represents a gene. Further, let S ∈ RN×2

store spatial coordinates of each sample. We assume there are spatially-related genes among all genes. We assume the
genes fall into several profiles. The genes in the same profile have the same expression over the sampled spatial context.
For each profile, we can summarize the gene expression for such group by one representative factor. Consider there are
K profiles, we can then form our model as:

Y =
K
∑

k=1

f k lT
k + E

= F LT + E

where fk ∈ Rn is the factor gene in profile k capturing the gene expression pattern in that group, lk ∈ Rp indicates the

loading coefficients of each factor. We assume there is random noise E ∈ Rn×p in observations and Ei j
iid∼ N(0,1/τ).

The goal is to select spatially-related genes based on spatial information in S. We also extract the gene factors which
capture information across all genes based on feature extraction. We aim to find a latent gene space that respects spatial
structure.

Methods
In this section, we build up pipelines and models to achieve this goal. We adapt matrix decomposition methods to
incorporate spatial information. We first preprocess gene expression to make them amenable for wavelet filtering. We
then use the Daubechies D4 Wavelet Transform [Daubechies, 1992] as wavelet filter.

Gene Expression Over Location
We leverage a pre-processing step, which we call input generation, to combine spatial and expression data sources. We
have both gene expression measurements and spatial coordinates for each sample. Each gene has an expression over
each sample, and we can draw the sample over a 2D map by their coordinates.
As shown in Figure 2, the gene with the least sparsity in expression shows varying levels of expression across different
spatial regions. Intuitively, we may consider the spatial expression pattern from this gene to be spatially related. How-
ever, most genes are sparse and do not show fluctuations in gene expression. Therefore, we first filter out those genes
using a kOverA filter: we only keep genes that have an expression measure above A in at least k samples [Gentleman
et al., 2021]. This has the effect of removing genes that are rarely active, though it is possible that strongly expressed
genes still show no spatial relationships.
We want gene expression data to have a neat grid structure that can be expressed as a matrix form. However, at first,
expression measurements are roughly staggered over the spatial locations, as shown in Figure 3. This is a consequence
of the sampling strategy adopted by the 10x genomics Visium platform. To obtain an evenly resampled version of the
expression pattern, we divide the two-dimensional space into several partitions and compute the local average of each
partition. Detailed are shown in Algorithm 1. Each gene has an expression over the grid and we now can use a matrix
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Figure 2. The most dense gene has a structured expression pattern.

Z ∈ RD2×P to represent it. The matrix Z becomes the new input for analysis. We then obtain the same formulation
as in Section Problem Setup, where we take n = D2 and each location corresponds to a new observation. We have
fk ∈ RD2

, k = 1, . . . , K as the factor genes, computed by vectorizing the gene expression matrix.

Figure 3. Left: The gene expression over scattered samples over locations. Right: The local average of gene expression
over grid locations, used as input to our algorithms.

The choice of D depends on the wavelet scale used in the next section. We choose D to be dyadic to prevent handling
edge cases in the wavelet transformation (recalling Subsection Wavelet Transformation). The dyadic size is also a natural
choice in image analysis. In particular, we choose D = 2J , where J is the level of scale in the wavelet transformation.
Larger J allows finer recovery, but also requires more parameters and may result in overfitting.

Wavelet Transformation and Shrinkage
We apply a wavelet transformation with shrinkage to denoise the gene expression matrix and smooth observed spatial
expression patterns. In simulations, we find that this technique gives more accurate recovery as the signal-to-noise ratio
decreases and yields less noisy visualizations for the spatially-related genes.
We implement wavelet transformation and shrinkage on the processed data matrix Z ∈ RD2×P . Each column of Z
is a vectorized expression matrix. For each column, we first reshape it into a D × D matrix and apply the wavelet
transformation. We have a coefficient list with W coefficients associated with each gene. Then we conduct wavelet
shrinkage on the coefficient list using the threshold strategies described in Subsection Wavelet Transformation. Finally,
we vectorize the coefficient list of each gene into a length W vector for each gene. Stacking all vectors together, we
have a coefficient matrix C ∈ RW×P . Note that the wavelet scale is specified by the size D of the input matrix, i.e., we
have D = 2J , where J is the scale. The details are specified in Algorithm 2.

Matrix Decomposition
The matrix of the shrunk wavelet coefficients C gives a summary of the denoised matrix. This allows improved recon-
struction of gene expression data. To obtain a low-dimensional approximation, we apply matrix factorization on the
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coefficient matrix C after transformation. We use the same notation in Section Problem Setup, with the subscript c to
denote the decomposition on coefficient matrix C .
The resulting singular vectors can be used to estimate spatially structured factor genes (Subsection Factor Gene). We
use SVD as a frequentist approach to estimating F̂c and L̂c . We also conduct EBMF (Section Empirical Bayes Matrix
Factorization), using the posterior expectation of Fc and Lc to estimate F̂c and L̂c . EBMF can select the number of
factors K by itself, whereas K must be manually specified in the SVD. The choice of K is informed by inspecting the
scree plot, as in spectral clustering and PCA. We choose the number of factors when current factors explain sufficient
information and the diminishing returns of additional factors are no longer worth the additional cost. Given F̂c and L̂C ,
we can compute the estimated coefficient matrix as Ĉ = F̂c L̂T

c .

Inverse Wavelet Transformation
To transfer the coefficient matrix Ĉ back to the estimated location-by-gene matrix Ẑ , we apply the inverse wavelet
transformation on columns of Ĉ , each of which is a vectorized coefficient list for one gene. This results in a D2 expression
matrix for each gene. Then we vectorize the matrix and stack all vectors together. This yields the reconstructed matrix
Ẑ . Details are given in Algorithm 3. For visualization, we also conduct a similar process for each column of F̂c . In
this case, each column is associated with an factor gene. By applying the inverse wavelet transformation to each factor
gene, we can build spatial gene expression matrices M1, . . . , MK representing gene factors.

Algorithm 1 Input Generation

Require: Sample by gene matrix Y ∈ RN×P , spatial matrix S ∈ RN×2, size of gene expression matrix D
1: Compute the range of x , y coordinates from S, compute the coordinates of vertices of big rectangle map B cover all

N samples spatially.
2: Partition interval x and interval y into D equal length interval, together get D2 partitions over rectangle B.
3: while i ≤ P do ▷ Consider gene i expression over map B
4: Select i-th column of gene matrix Y
5: Compute the local average of gene expression of gene i in each partition
6: Get D2 matrix Gi as gene expression of gene i
7: Vectorize Gi into a vector gi with length D2

8: end while
9: Stacking all {gi}Pi=l together into matrix Z ∈ RD2×P

10: return matrix Z ▷ A transformed gene expression matrix

Algorithm 2 Wavelet Transformation and Shrinkage

Require: Location by gene matrix Z ∈ RD2×P , threshold method, optional threshold parameter τ. ▷ Apply threshold
on wavelet coefficient if threshold method is specified

1: while i ≤ P do ▷ Consider gene i expression as matrix Gi
2: Select ith gi column of gene matrix Z
3: Form gi into expression matrix Gi with size D2

4: Apply 2-D discrete wavelet transformation over Gi , get coefficient list Ci , with number of coefficients W
5: Apply wavelet shrinkage over Ci with optional parameter τ
6: Vectorize Ci into a long vector ci with length W
7: end while
8: Stacking all {ci}Pi=l together into matrix C ∈ RW×P

9: return coefficient matrix C ▷ Column i of C store the coefficient of from gene i

Evaluation
We evaluate our proposal both quantitatively and qualitatively. Our quantitative results measures reconstruction error
between the estimated Ẑ and Z using the Frobenius norm ∥Ẑ − Z∥2F .
This evaluation is also used for hyperparameter tuning, such as the scale J of the wavelet and the choice of wavelet
thresholding method. Our qualitative result is given by visualization of the estimated factor gene expression matrices,
with emphasis on capturing global spatial structure.
We use cross-validation in computing reconstruction error and calculating gene-wise errors. This evaluation is helpful
in selecting spatially related genes. We also found a simple connection between the gradient of gene expression and
spatial contribution, discussed in Section Real Data Experiment. This discussion requires a measure of spatial expression
smoothness. To this end, a simple step computing the fluctuation of gene expression would give a spatial gene selection

Page 7 of 17



F1000Research 2022- DRAFT ARTICLE

Algorithm 3 Inverse Wavelet Transformation

Require: (reconstructed) Coefficient matrix C
1: while i ≤ P do
2: Select ith ci column of gene matrix C
3: Form ci into coefficient list Ci with number of coefficients W
4: Apply 2-D inverse wavelet transformation over Ci , get post-wavelet expression matrix Ĝi
5: Vectorize Ĝi into a long vector ĝi with length D2

6: end while
7: Stacking all { ĝi}Pi=1 together into matrix Ẑ ∈ RD2×P

8: return matrix Ẑ ▷ Post processing reconstructed gene expression matrix

that coincides with the reconstruction error selection. For calculating successive differences, consider Z as the input
matrix and let δ jk = (z j,k+1 − z jk)2, k = 1, . . . , D2. Then we define the gradient by

∑

jk δ jk.

Simulation
We setup simulations to see whether representing spatial structure with a wavelet basis supports denoising and visu-
alization of gene expression. We will see improved recovery in the low signal-to-noise ratio regime. Qualitatively, we
also find factor gene visualizations to be more spatially consistent.
We first describe the simulation mechanism. We the set number of factors to K = 9. We generate K gene expression
matrices M1, . . . , MK ∈ RD2

, each representing a factor gene. These factor gene expression patterns are shown in
Figure 4. We vectorize the patterns Mk into factor genes fk, which are then scaled so ∥ fk∥= 1. We obtain F ∈ RD2×K by
stacking all the fk together. We generate loadings l1, . . . , lK ∈ RP×K by drawing coordinates independently from N(0,1).
We set D = 32 and wavelet scale J = 5. We similarly stack lk to obtain L ∈ RP×K . We use Z = F LT as the ground-truth
signal matrix and add noise E to yield data matrix Zd = F LT + E, where entries in E are zero-mean normal noise that
corrupt the underlying signal. In our analysis, we use a Daubechies D4 Wavelet as the wavelet filter, and for coefficient
shrinkage we use hybrid thresholding.

Figure 4. The gene expression pattern for nine factor genes in the simulation experiment.

We use the pipeline from Section Methods. The generated data Zd already reflects the structure produced by the
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processing of Subsection Gene Expression Over Location. For comparison, we also directly decompose the matrix Zd
with the SVD without any wavelet transformation. We call the resulting factors F̂raw and reconstruction Ẑraw. We also
have the same quantitative reconstruction error and qualitative visualization of factor gene F̂raw. We also measure the
size of the gradients across the estimated gene expression matrix M̂i . The gradient is computed by successive difference
of neighboring image pixels. We calculated the sum of the squares of the gradient. This measurement shows whether
the gene expression matrix has been smoothed. This property is of interest, since smoother estimates are often more
visually appealing.
We denote the signal-to-noise ratio as SNR = sd(Z)

sd(E) , where sd stands for standard deviation. Let r = 1
SNR . We specify

19 evenly spaced settings of r from 1 to 10. For each setting, we run 100 replicates with different simulated Zd and
apply wavelet and SVD-based dimensionality reduction. The resulting average errors across r are shown in the Figure
Figure 5. The wavelet and shrinkage technique has better performance when r is larger than 5, i.e., the low signal-to-
noise ratio regime. The gradient of the gene expression matrix under two methods is shown in Figure 5. The wavelet
and shrinkage approach smooths edges in the factor gene expression image, giving a more interpretable visualization
and lower error in this low SNR setting.

Figure 5. The reconstruction error and gradient for estimated gene-by-location matrix with different SNR. The x-axis
shows the rate of 1

SNR The left subplot shows the gradient changes. The gradient of gene expression is always lower
with the wavelet technique, a consequence of its smoothing property. The right subplot shows the error – the wavelet
method has lower error as the magnitude of noise increase.

The factor genes are shown in Figure 6. The SVD without wavelet technique has erratic, outlying pixels, especially
in the last three genes. The visualization is sensitive to outliers. In contrast, the SVD combined with wavelet has
smoother patterns. Like the SVD-based method, it appears to have mixed several of the true underlying factors in
each of the recovered ones. Moreover, the sharp boundaries visible in the SVD factors become smoothed over in the
wavelet-decomposition. The wavelet method applies a decomposition on coefficients space after thresholding, while
SVD operates on individual pixels. The SVD capture more information, but also emphasize nuisance information in-
duced by errors. Wavelet method also reduces model complexity, improving estimation accuracy. Other non-parametric
methods, such as Fourier transformation and Gaussian Process-based methods also operate on coefficients space. Still,
they would struggle to capture sharp transitions, since their bases are smooth functions.
Nonetheless, both the SVD and wavelet-based visualizations reflect spatial trends in the true factor genes (in Figure 4).

Real Data Experiment
In this section, we show that wavelet and shrinkage technique reduces reconstruction error quantitatively. We ran our
method on a public spatially resolved transcriptomics data [Weber, 2021]. The dataset represents a single biological
sample from the human brain dorsolateral prefrontal cortex (DLPFC) region, measured with the 10x Genomics Visium
platform. Further, we identify a simple connection between the gradient of gene expression and quantitative error. A
simple step computing the fluctuation of gene expression alone (calculating successive difference of the gene expression
image) selects genes that have reduced reconstruction error when using wavelet-guided dimensionality reduction.
We first process the ST data through our pipeline. The ST data contains 4992 observations with 33538 genes. Expres-
sions from most genes are sparse. We implement the pipeline from Section Methods. We pre-process as in Subsection
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(a) Factor genes without wavelet smooth (b) Factor genes with wavelet smooth

Figure 6. Factor gene visualization. Figure (a) implements SVD on Zd , the visualization of column of F̂raw. Figure (b)
implements SVD on coefficient matrix, the visualization of F̂ .

Gene Expression Over Location and then apply a kOverA filter to select genes. We find k = 3, A= 7 gives us 721 genes
with average expression as 2.71. Then we apply Algorithm 1 to transfer the sample-by-gene matrix to a grid-by-gene
matrix. We set D = 64 and wavelet scale J = 6. We obtain an image heatmap for each gene like in Figure 7.

Figure 7. Gene expression over the grid.

We then vectorize P = 721 image expression and stacking vectors together, we have generated input data Z ∈ R642×721.
We run our pipelines with and without wavelet transformation for evaluation. We first implement SVD and EBMF on Z
or on coefficient matrix C after applying wavelet transformation and thresholding each column. We choose the number
of factors K by examining singular values. If the singular value is larger than 500, we keep it as a factor. In EBMF, we
set upper bound that K to be smaller than the corresponding K in SVD, then let algorithm choose K itself.
Quantitative evaluation metric is conducted by cross-validation on non-zero entries. We set 5 folds cross-validation with
replacement. In particular, we select random 1

5 non-zero entries in matrix Z and set them to zero, then we save matrix
as the masked matrix (train data) Zt rain. We store the values and position of the masked entries as test data Ztest . We
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then ran methods on Zt rain. The result shows a difference in whether to use the wavelet technique. The result from
SVD and EBMF are close to each other coordinate-wise, hence we only show one of them in some results below.We
include the comparison between SVD and EBMF in the Appendix A. As in Section Simulation, we have F̂ and Ẑ from
the wavelet approach and F̂raw and Ẑraw on the original data.

Total Error and Parameter Tuning
We compute the reconstruction loss,

1
N

∑

i, j∈test

(Ẑi j − Zi j)
2

where N is the number of test entries. We evaluate the loss only on test entries. We first tune parameters. We set up
three settings: decompose the raw data with SVD or EBMF; wavelet transformation with hybrid thresholding; wavelet
transformation with manual thresholding with threshold τ = 10,20, . . . , 100. In each setting, we ran 100 replicates.
The reconstruction error shown in Figure 8.

Figure 8. The reconstruction error for different wavelet parameters. The upper plot contains the result from all set-
tings, the leftmost τ = −1 result is the decomposition without wavelet transformation. τ = 0 indicates the hybrid
thresholding. The bottom plot zooms into the experiment under manual threshold for τ ∈ [10, 100].

As shown in the upper panel of Figure 8, wavelet thresholding with manually set τ reduces error compared to decom-
posing raw data. The wavelet has the most positive effect when τ= 40, as shown in the bottom panel. We use τ= 40
in our following analysis.

Genewise Error
We then evaluate how method performance varies for each gene by calculating the genewise reconstruction error. This
reveals genes whose strong spatial expression structure leads to improved performance when using a wavelet basis.
We still hold out 1

5 of the entries at random as a test set. We compute the reconstruction error of test entries on each
column of Ẑ−Z . We calculate entry-wise loss across 100 replicates and estimate the average loss. We compare genewise
errors with or without wavelet transformation. The SVD and EBMF show the same result regarding the decomposition
method. We show the result of EBMF in Appendix A Figure 14.
As we can see, most of the genes have lower reconstruction error when directly applying the SVD or EBMF. However,
for some genes, wavelet smoothing reduces error. For example, this is seen in genes 712, 713, 716, 719, 715, 710, 711,
721, 717, 596, 373, and 289. We conjecture that these genes have acute fluctuations as well as clear spatial patterns.
The expression matrix of these genes would have a larger gradient and distinct edges. To verify our conjecture, we
calculated the sum of squares of the gradient of each gene expression matrix. We show the result in Figure 10.
The result verifies our conjecture: genes with larger gradients have better reconstruction under the wavelet-guided
decomposition. This suggests a pre-processing step for selecting wavelet-suited genes by calculating the gradient of
each gene. The spatially related genes would have a lower reconstruction error. Among these spatially related genes,
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Figure 9. The reconstruction error for each gene. The x-axis is the error from EBMF on raw data, the y-axis is the error
from the combination of wavelet thresholding and EBMF.

Figure 10. The sum of squares of the gradient for each gene. The y-axis is the index of each gene. Each bar’s color
shows whether that gene has better performance when using a wavelet basis. The M on the x-axis stands for "millions".

Page 12 of 17



F1000Research 2022- DRAFT ARTICLE

one possibility is that we can divide them into two groups, one for decomposition directly and the other for the wavelet
technique.

Factor Genes
Now we visualize the top factor genes and genes with high loadings on these factor genes. In Figure 11(a), we decom-
pose Z using the SVD and plot the first factor gene and matrix slides of genes with the largest 5 loadings on that factor.
The factor gene captured the same patterns as the original genes. To improve visualization, we find the analogous
wavelet-based factors (we use manual thresholding with τ= 40), shown in Figure 11(b).

(a) Factor genes without wavelet smooth (b) Factor genes with wavelet smooth

Figure 11. The top left figure is first factor gene, the following figure by row is genes with largest loadings on first
factor gene: gene 712, 713, 716, 719, 715.

The wavelet thresholding approach smooths over edges in the original visualization. The first factor gene captures the
global spatial expression. We have a similar result for the second factor gene, as shown in Figure 12.

(a) Factor genes without wavelet smooth (b) Factor genes with wavelet smooth

Figure 12. The top left figure is the second factor gene, the following figure by row is genes with largest loadings on
second factor gene: gene 596, 289, 373, 712, 578.

The second factor gene is orthogonal to the first one, capturing different spatial structures in gene expression. Different
factor genes capture global and local structure, and using a wavelet decomposition provides denoised spatial expression
visualization.
In conclusion, we can use this dimensionality reduction technique for spatial gene selection and extraction. We select
wavelet-suited genes based on the calculated gradient. Then, we can select spatially related genes based on reconstruc-
tion error via cross-validation. Alternatively, we can extract factor gene to capture spatial information and use factor
genes for visualization and further analysis.
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Software Availability
We provide a small code block to show vignette of generating Figure 11 and Figure 12, shown in code block 1.

1 library(waveST)
2 res = kOverA_ST(k = 3,A = 7)
3 waveST = waveST(data = res$df , spatial = res$viz)
4

5 #### Figure 11
6 waveST = decompose(waveST , wavemethod = "raw", decom_method = "SVD", K = 5)
7 plot(waveST , k = 1, wave = FALSE)
8

9 #### Figure 12
10 waveST = decompose(waveST , wavemethod = "wave", decom_method = "SVD", K = 5, tau = 40)
11 plot(waveST , k = 1, wave = TRUE)

Listing 1. The basic wavelet-based dimensionality reduction workflow. kOverA_ST transforms the original spatial
expression context into an image. This is processed by waveST. The final dimensionality reduction step is performed
by decompose.

We have made a new package waveST containing the workflow we developed. The package is available at GitHub. The
kOverA_ST function reduces data from an original [Weber, 2021] class input using the kOverA technique. Then we
use waveST function to construct a S4 class waveST, containing input generated by Algorithm 1. This object-oriented
approach stores properties of the original spatial experiment and simplifies downstream calls, like decomposition and
visualization. We use the decompose function to apply all decomposition methods. In line 6, we apply the SVD to our
original data, setting the number of factors to 5. In line 11, we apply the wavelet-based reduction and apply a manual
threshold with τ = 40. We use plot and k=1 to visualize the first factor gene and matrix slides of the genes with the
largest 5 loadings on that factor.

Conclusion
We have proposed a pipeline for dimensionality reduction that respects spatial structure. Both simulations and real data
experiments demonstrate that wavelet and shrinkage techniques show positive results in spatially resolved transcrip-
tomics data. We highlight the idea of combining image processing techniques and statistical methods for application in
a spatial genomics context. One future direction is splitting genes into a groups suited or not for wavelet-based decom-
position, and implementing decomposition with or without wavelet. Another direction is to focus input generation on
only those genes that are thought to be spatially related. For genes not related to spatial information, we may perform
regular decomposition on original data Y ∈ RN×P , abandoning the spatial information of those genes. We expect this to
improve reconstruction performance. In further analysis, it is worth considering other wavelet smoothing techniques
and wavelet filters. The current methods incorporate little biological information. Bringing more domain knowledge
will require further techniques, but is expected to yield better results. The input generation computes local average
over even grids; however, it is possible to apply the wavelet method for irregularly spaced data [Nason, 2008]. We hope
wavelet methods will be useful in adapting existing methods for statistical genomics to the spatial setting.
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A Comparison Between SVD and EBMF
This section we showed the comparison between the reconstruction result between SVD and EBMF.

A.1 Simulation
In this section, we show the element-wise comparison between the reconstruction of SVD and of EBMF with wavelet
technique.

Figure 13. The element-wise comparison of two reconstruction matrices. The x-axis shows the result of SVD decom-
position, the y-axis shows the result of EBMF decomposition.

A.2 Real Data Result
In this section, we show the reconstuction error per gene result for SVD, similar to Figure 14.
Then we show the result between SVD and EBMF with and without wavelet technique in Figure 15.
As we can see, SVD and EBMD have the very similar result.
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Figure 14. The reconstruction error for each gene. The x-axis is the error from SVD on raw data, the y-axis is the error
from the combination of wavelet thresholding and SVD.

(a) Error per gene without wavelet transformation. (b) Error per gene with wavelet transformation.

Figure 15. The reconstruction error for each gene.
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