
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

Bootstrap Confidence Regions for Learned Feature
Embeddings

Kris Sankaran

To cite this article: Kris Sankaran (2023): Bootstrap Confidence Regions for Learned
Feature Embeddings, Journal of Computational and Graphical Statistics, DOI:
10.1080/10618600.2023.2197478

To link to this article: https://doi.org/10.1080/10618600.2023.2197478

View supplementary material

Published online: 15 May 2023.

Submit your article to this journal

Article views: 26

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2023.2197478
https://doi.org/10.1080/10618600.2023.2197478
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2197478
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2023.2197478
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2197478
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2023.2197478
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2197478&domain=pdf&date_stamp=2023-05-15
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2197478&domain=pdf&date_stamp=2023-05-15

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2023, VOL. 00, NO. 0, 1–11
https://doi.org/10.1080/10618600.2023.2197478

Bootstrap Confidence Regions for Learned Feature Embeddings

Kris Sankarana,b

aDepartment of Statistics, University of Wisconsin - Madison, Madison, WI; bWisconsin Institute for Discovery, Madison, WI

ABSTRACT
Algorithmic feature learners provide high-dimensional vector representations for non-matrix structured
data, like image or text collections. Low-dimensional projections derived from these representations, called
embeddings, are often used to explore variation in these data. However, it is not clear how to assess the
embedding uncertainty. We adapt methods developed for bootstrapping principal components analysis to
the setting where features are algorithmically derived from nonmatrix data. We empirically compare the
derived confidence areas in simulations, varying factors influencing feature learning and the bootstrap, like
feature learning algorithm complexity and bootstrap sample size. We illustrate the proposed approaches
on a spatial proteomics dataset, where we observe that embedding precision is not uniform across all tissue
types. Code, data, and pretrained models are available as an R compendium in the supplementary materials.
Supplementary files for this article are available online.

ARTICLE HISTORY
Received February 2021
Accepted March 2023

KEYWORDS
Bootstrap/resampling; Data
visualization; Dimension
reduction; Machine learning

Algorithmic feature learning has transformed modern data
analysis, enabling the exploration and manipulation of complex
data types through simple vector representations. In this way,
data as diverse as molecular graphs, satellite images, and
document collections have been made amenable to exploration
using classical multivariate analysis tools. In particular, when
these learned representations are high-dimensional, it is natural
to apply dimensionality reduction to them, both to support
qualitative interpretation and as a denoising step before
subsequent modeling (Erhan et al. 2009; Nguyen, Yosinski, and
Clune 2019). These dimensionality-reduced representations,
also called embeddings, are widely used; however, it remains
a challenge to quantify the uncertainty associated with the
resulting projections. This uncertainty can be beneficial to
both interpretation and modeling. For example, the vector
representation of a short document may be more ambiguous
than that of a long one simply because fewer words are available
to judge its content. Treating the derived projections of the two
documents as equally precise would not be appropriate. Indeed,
if we assume that the documents were drawn from a topic model,
then the number of words in each document equals the number
of trials in a multinomial sample centered around the unknown
representation (Ke and Wang 2022).

To characterize embedding uncertainty in algorithmic fea-
ture learners, we adapt bootstrap methods for building con-
fidence areas for principal components analysis (Elguero and
Holmes-Junca 1988; Chateau and Lebart 1996; Josse, Wager,
and Husson 2016). These methods cannot be directly applied
to embeddings derived from projecting learned features because
such an analysis fails to account for randomness in the fea-
ture learning process, resulting in underestimated uncertainty.
Indeed, it is known that treating the output of a preliminary

CONTACT Kris Sankaran ksankaran@wisc.edu Department of Statistics, University of Wisconsin - Madison, Madison, WI.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

model as fixed can bias inferences in downstream analysis, and
developing valid inference procedures in this more complex
setting is an area of active interest. For example, Kim et al.
(2020) provide a strategy for valid post-dimension reduction
inference in the sufficient dimensionality reduction setting, and
Wang, McCormick, and Leek (2020) proposes a sample-splitting
method for valid post-prediction inference. For concreteness,
in word embedding applications, training an embedding model
twice may result in two different, though hopefully similar, rep-
resentations. This introduces randomness in the feature extrac-
tion process, and the coordinates of the two sets of learned
representations need not correspond to one another, in contrast
to the usual setting where the columns of the data matrix are held
constant. Assuming that the output from the word embedding
algorithm is fixed could lead to underestimated uncertainty
during downstream modeling or visualization, and improved
measures of embedding variability could help calibrate subse-
quent inferences. A final source of complexity is that many
feature learners are supervised, and if the model is overfit, the
associated embeddings may suggest misleading interpretations,
overstating the differences between classes in the learned feature
space (Gross, Taylor, and Tibshirani 2015).

To characterize the precision of embeddings derived from
feature learners, we propose to build confidence areas for these
embeddings by bootstrapping the entire workflow, including
retraining the original feature extraction algorithms. Specifi-
cally, we compare the computational efficiency and statistical
coverage for three bootstrap strategies motivated by variations of
the nonparametric and parametric bootstrap for PCA. Though
all bootstrap approaches give comparable results and are approx-
imately valid in a simple low-rank model, more complex sim-
ulations suggest that the parametric bootstrap underestimates

© 2023 American Statistical Association and Institute of Mathematical Statistics

https://doi.org/10.1080/10618600.2023.2197478
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2023.2197478&domain=pdf&date_stamp=2023-05-03
mailto:ksankaran@wisc.edu
http://www.tandfonline.com/r/JCGS

2 K. SANKARAN

embedding uncertainty across all feature extractors. Therefore,
multiple runs of the feature learner appear necessary for uncer-
tainty estimation. Our experiments also identify that the choice
of feature extractor can strongly affect embedding variability, but
model complexity and bootstrap hyperparameters have com-
paratively little influence. Through an application to a spatial
proteomics dataset, we illustrate how confidence areas can high-
light qualitative distinctions between regions of the embedding
space. We have released all code, raw and intermediate data, and
trained models associated with simulations and data analysis.
Documentation about these artifacts and how to reproduce
them is provided in Supplementary Section 1 and through the
research compendium at https://github.com/krisrs1128/LFBCR.

1. Background

1.1. Feature Learning

We will analyze projections from three complementary feature
learning algorithms. These techniques are common examples
of deep unsupervised, deep supervised, and shallow feature
learning algorithms used in practice. The first algorithm is the
Variational Auto-Encoder (VAE), an unsupervised method that
learns a K-dimensional reduction of a dataset by optimizing a
reconstruction objective (Kingma and Welling 2014). It models
samples x using the generative mechanism p (z) pξ (x|z) of the
data; p (z) is a prior on latent features and pξ (x|z) is a likelihood
parameterized by ξ . The algorithm finds a pair ξ , ϕ maximizing
the lower bound,

log p (x) ≥ Eqϕ

[
log pξ (x | z)

] − DKL
(
qϕ(z | x)‖p(z)

)

where DKL is the Kullback-Leibler divergence between two prob-
ability distributions and qϕ (z|x) = N

(
μϕ (x) , diag

(
σ 2

ϕ (x)
))

maps samples to normal distributions in the latent space with
sample-dependent means μϕ (x) and variances σ 2

ϕ (x). This
problem is nonconvex, and the solution is nondeterministic.
There are many implementations of VAEs, and the experiments
below apply the interface released by Van Den Oord and Vinyals
(2017).

Second, we learn supervised features through a Convolu-
tional Neural Network (CNN). Unlike the VAE, this model has
access to responses y ∈ R for each sample and attempts to
learn representations that predict y. A CNN regressor optimizes
an empirical estimate of E‖y − fW1:J (x)T β‖2

2 over W1:J and β .
Here, fW1:J passes sample x through J layers, each of which learns
more complex features associated with the input before arriving
at a “final layer” representation used for predictions. The final
representation f J (x) is defined recursively according to

f j
W1:j

(x) = σ
(

Wjf
j−1
W1:(j−1)

(x)
)

f 0 (x) = x

where σ (x) := xI (x ≥ 0) is a rectified linear unit and matrices
Wj are restricted to the set of convolutions. Like in the VAE,
this is solved through first-order optimization methods. Our
implementation follows the Convolution-Batch Normalization-
Rectified Linear Unit architecture from Raghu et al. (2017).

Third, we use a random convolutional features (RCF) model
(Rahimi and Recht 2008), a shallow alternative to the deep fea-
ture extractors above. A random sample of K training examples
xi1 , . . . , xiK ∈ R

w×h×c is selected; the xi’s are assumed to be
c-channel images with dimension w × h. A random s × s
patch, denoted wk ∈ R

s×s×c, is extracted for each sample. For
any c-channel image x, the kth feature zk is found by convolving
x with wk and spatially averaging over activations. This model
uses random training image patches as convolutional kernels
rather than learning them from scratch. The concatenated fea-
tures [z1, . . . , zK] are analogous to the features fW1:J (x) in the
CNN. For prediction, the ntrain training samples are featurized
into Z ∈ R

ntrain×K . Then, a ridge regression model is trained
from Z to the y, giving an estimate β̂ . For a new example x∗,
the same image patches w1, . . . , wK are used to form z∗, and
predictions are made with z∗T β̂ . This model does not require
gradient-based training and can be learned quickly. Nonetheless,
its dependence on the random selection xik means that results
are not guaranteed to agree from run to run.

1.2. Principal Components Analysis and the Bootstrap

Several methods are available for bootstrapping Principal
Components Analysis (PCA), and these provide the foundation
for analyzing embedding uncertainty in feature learning
algorithms. The total bootstrap computes B principal planes
by applying PCA to B resampled versions of the data (Elguero
and Holmes-Junca 1988; Chateau and Lebart 1996). For each
b, rows are sampled with replacement, viewed as draws from
a larger population. If Xb is the bth resampled version of the
original data X ∈ R

n×D, and if Xb = Ub�bVT
b is its associated

rank-K truncated Singular Value Decomposition (SVD), then
each plane is the span of Vb ∈ R

p×K . The associated principal
axes may be reflected or swapped with one another, so the
associated sample coordinates must be aligned. Procrustes
analysis can support this alignment. Specifically, Vb can be used
to derive projected coordinates Zb = XVb for the original data.
Procrustes analysis identifies rotation matrices R1, . . . , RB and
a mean matrix M minimizing,

min
R1,...,RB∈O(K,K),M

B∑
b=1

‖ZbRb − M‖2
F ,

whereO (K, K) is the space of p × p orthonormal matrices. This
problem can be solved by an algorithm that cyclically optimizes
each Rb and M in turn (Friedman, Hastie, and Tibshirani 2001).
It returns a cloud of B points R1zi, . . . , RBzi for each sample i,
and their sample mean and covariance can be used to derive a
level-α confidence ellipsoid.

In contrast, fixed-effects PCA views the rows of the data
matrix as the entire population of interest (Josse, Wager, and
Husson 2016). The source of randomness, in this case, is mea-
surement noise around a low-rank model, not sampling from
a larger population of rows. A parametric bootstrap provides
confidence areas for the true latent coordinates in a low-rank
model by estimating the model and resampling residuals. We
will provide relevant details of this approach when we adapt it
to the feature learning setting in Section 2.2.

https://github.com/krisrs1128/LFBCR

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 3

Figure 1. A summary of the proposed bootstrap procedures. All begin by splitting data into training and inference sets for feature learning and embedding generation.
The nonparametric bootstrap (top row) trains B separate feature learners, and each is used for feature extraction and dimensionality reduction before being aligned. The
parametric bootstrap (bottom row) trains a single feature learner and then simulates and aligns an ensemble of B latent coordinates for each sample. The compromise
(middle row) trains a smaller set of feature learners but further resamples residuals to increase the number of apparent bootstrap replicates.

2. Bootstrap Strategies

This section adapts PCA-based bootstrap methods to the fea-
ture learning setting. Figure 1 summarizes our three candi-
date approaches. These bootstrap methods quantify the stability
of the principal subspaces associated with the representations
derived by feature learning algorithms. Two proposals are direct
analogs of the nonparametric and parametric bootstrap for PCA.
A challenge with using the nonparametric bootstrap directly is
that it can be computationally expensive, requiring the training
of many feature learners. In contrast, the parametric bootstrap
only requires training a single feature learner. However, it makes
stronger assumptions about the relationship between embed-
dings learned across training runs. Our third approach, given
in Section 2.3, attempts to bridge these two extremes.

Before introducing the bootstraps in detail, we establish nota-
tion. Suppose we have n samples

(
xi, yi

) ∈ X × R, where X
is the domain of the covariates xi and yi are labels. Collect all
samples intoD = (

xi, yi
)n

i=1. A feature learner is a parameterized
mapping T (·; θ) : X → R

P taking data from X and represent-
ing it in R

P. For example, in a text data application, we expect
the learner to transform a document into a vector of features
reflecting its topic. θ is estimated from data by optimizing,

θ̂ := arg min
θ∈�

L (D, T (·; θ)) (1)

for some loss L. For an unsupervised feature learner, candidates
θ ∈ � are functions of xi alone. For a supervised feature
learner, the class includes functions of both xi and yi. To simplify
notation, we will write zi = T

(
xi; θ̂

)
∈ R

P to denote the learned
features for observation i. A challenge is that the learned features
are not the same from one run to the next—the kth learned
feature from one run need not have any relationship with the
kth feature from the next. This misalignment is a consequence

of using stochastic optimization in (1). However, even without
direct correspondence across runs, they may all reflect the same
underlying latent features. In particular, projections of learned
features onto their principal subspaces may be similar across
multiple runs after applying an appropriate alignment.

We will split the n samples into a feature learning set, indexed
by I ⊂ {1, . . . , n}, and an inference set, indexed by IC. This
split is motivated by the potential to overfit features to a super-
vised learning task (Gross, Taylor, and Tibshirani 2015; Wang,
McCormick, and Leek 2020). In this case, when analyzing the
resulting embeddings, a strong gradient across values of y may
appear, even if there is no relationship between the xi and yi,
and using a separate inference set guards against this poten-
tially misleading visualization. The setting is analogous to that
encountered in post-selection inference—we do not select fea-
tures based on their association with y, but we do algorithmically
learn features that are. The fraction 1

n |I| used for feature learn-
ing is a hyperparameter whose influence is empirically studied
below. The learning set (xi)i∈I is resampled B times; in contrast,
samples within the inference set IC are fixed. The B resampled
learning datasets are used to train B feature extractors, T

(
·; θ̂b

)
which can then be applied to the entire dataset, yielding learned
features Zb ∈ R

n×P.

2.1. Nonparametric Bootstrap

Like the total bootstrap, one approach to comparing embeddings
across feature extractors is to learn B feature extractors on the
training set, use them to extract projected features on the infer-
ence set, and then align the results. We implement this through
the following process. For each b, compute the rank-K truncated
singular value decomposition Ẑb,IC = Ub�bVT

b , where the
index IC means that only features associated with the inference

4 K. SANKARAN

set are used. We then define coordinates for sample i with respect
to Vb using the ith row of Lb := Ub�b ∈ R

∣∣IC∣∣×K , which we
refer to as the embedding lbi . These coordinates provide a low-
dimensional representation of the learned features from the bth
feature extractor.

A Procrustes analysis applied to L1, . . . , LB learns a series
of rotation matrices R1, . . . , RB aligning the embeddings across
bootstrap replicates. For each sample i, compute a sample mean
and covariance matrix based on the B vectors Rblbi . These can
then be used to create 1 − α level confidence areas for each
inference sample in the K-dimensional space of embeddings.
Specifically, each sample’s confidence area is an ellipse centered
at the sample mean of the Rblbi and with axes given by the
eigenvectors of the associated sample covariance. This approach
plugs in an estimate for a “true” low-dimensional L, assuming
that this representation is noisily observed and then subject
to arbitrary rotations. Note that if the underlying latent rep-
resentations are subject to more general transformations (e.g.,
translations) across runs of the extractor, this assumption would
not be appropriate, a point that we revisit in Section 5.

The advantage of this approach is that it does not require a
parametric model for simulating new versions of Lb. The price
to pay is that it is necessary to train B feature extraction models
T

(
·, θ̂b

)
, which can be a computational burden, even if it is

parallelizable. Further, confidence areas are not computed for
samples in the feature learning set (xi)i∈I . However, suppose
the uncertainty of sample-level projections is assumed to vary
smoothly. Then, a heuristic is to consider the uncertainty of a
training sample in I as comparable to those of nearby samples in
the inference set IC.

2.2. Parametric Bootstrap

We consider a parametric bootstrap for a low-rank model to
avoid the computational complexity associated with training B
feature extractors. Our approach follows the construction of
confidence areas in fixed-effects PCA (Josse, Wager, and Hus-
son 2016), except that we add a permutation at the final step,
reflecting that the coordinates of the feature extractor need not
match across runs. Specifically, this bootstrap simulates Lb by
resampling residuals from a fitted low-rank model, analogous to
fixed-effects PCA. Suppose that variation across xi is induced by
latent features li ∈ R

K . We model the feature learning process by,
Z = LVT + E Eij ∼ N

(
0, σ 2

E
)

(2)
y = Lβ + ε εi ∼ N

(
0, σ 2

ε

)
(3)

where L ∈ R
n×K stacks the li and Eij is the ijth element of E.

Only Z is available for predicting the response y.
To simulate embeddings Lb based on a single set of learned

features Z, we resample the rows of Z in the inference set
IC, resulting in Zb,IC . We compute the rank-K truncated SVD
Ẑb,IC = U�VT of Zb,IC . Letting Lb = Ub�b, we then simulate
bootstrap samples,

Lb = (
Lb + Eb

)
�b,

where Eb ∈ R
n×K is obtained by resampling entries of Z∗

b,IC −
Ẑ∗

b,IC and �b ∈ R
n×P is a random permutation matrix. Align-

ment and confidence area construction then proceed as in the

nonparametric bootstrap approach, with alignment done using
a Procrustes rotation and confidence areas estimated separately
for each sample based on the sample mean and covariance across
the B bootstrap replicates.

2.3. Compromise Bootstrap

The parametric bootstrap approach requires training only one
feature learner T

(
·, θ̂

)
, so it is more computationally efficient

than the nonparametric bootstrap. However, we expect that mul-
tiple feature learners may more accurately represent uncertainty.
As a compromise, we adapt the parametric bootstrap to the
case where S feature extractors are trained, with 1 < S < B.
Specifically, we aim to simulate L1, . . . , LB in the case where
we have access to T

(
·, θ̂s

)
for s = 1, . . . , S. From a high level,

this approach applies the parametric bootstrap to each of the S
feature learners, resampling residual errors across all.

We begin as in the nonparametric bootstrap, extracting infer-
ence set features Zs,IC using each of the S trained feature learners.
However, instead of directly applying dimensionality reduction
and alignment, we simulate additional reduced features as in
the parametric approach. Specifically, we compute a rank-K
truncated SVD Ẑs,IC = Us�sVT

s of Zs,IC and define Ls = Us�s.
We then generate

Lb = (
Ls(b) + Eb

)
�b,

where s (b) is drawn uniformly from 1, . . . , S, Eb resamples
entries across Zs,IC − Ẑs,IC , and �b is a random permutation
matrix. Given the Lb, we generate confidence areas for each
sample i as before.

3. Simulations

We conduct two simulation studies. The first uses a low-rank
model and permits the calculation of coverage rates. However, it
is less representative of realistic feature learning settings because
the simulated data are matrix-valued and a simple linear com-
bination of latent features. The second generates images using a
spatial point process where a small set of parameters control the
generative mechanism. The distributed feature learning associ-
ated with this setting prevents us from computing the coverage
of confidence areas. However, its image data input and nonlinear
transformation of features more accurately reflect practice.

3.1. Low-Rank Model

The first simulation generates samples X ∈ R
n×D using,

X = U�VT + E � = diag (c1K) U ∼ Haar (n, K)

(4)

y = U�β + ε β =
(

b1 K
2

, −b1 K
2

)
V ∼ Haar (D, K)

(5)
Eij ∼ N

(
0, σ 2

E
)

(6)

εi ∼ N
(

0, σ 2
y

)
(7)

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 5

Figure 2. Projections from the low-rank data simulation. Each ellipse gives the confidence area for the latent coordinates of one sample. Squares are the positions of the
true low-rank coordinates after Procrustes rotating them to align with the centers of the ellipses. The confidence areas for the nonparametric bootstrap are smaller than
those for the parametric bootstrap. Those for the compromise method are conservative.

where Haar (n, K) denotes a random orthonormal matrix with
n rows and K columns. X is a random rank-K matrix observed
with Gaussian noise. y is a response depending on the latent
coordinates of each row. The specific parameters we use are N =
1000, D = 100, c = 100, b = 1, K = 2, σ 2

E = σ 2
y = 0.1. Note

that this is a model of the data X, not the features Z, as in (2).
As a feature extractor, we use a randomly perturbed and

permuted estimate of the latent coordinates based on the rank
K-truncated SVD,

Z =
(

Û�̂ + Ẽ
)

� (8)

where Û and �̂ contain the top K left singular vectors and values
of X and the ijth entry of Ẽ is drawn Ẽij ∼ N

(
0, 0.12). The

permutation � and noise Ẽ mimic the variation that would be
expected across retrained feature extractors. Given the source
data X and extracted features Z, we apply all three bootstrap
methods, generating B = 1000 bootstrap replicates in each case.
We train S = 100 separate feature extractors for the compromise
approach.

The resulting 95% confidence ellipses are shown in
Figure 2. Qualitatively, the parametric and nonparametric
bootstrap approaches provide similar output. A smooth color
gradient in values of y suggests that the feature extractors accu-
rately estimate the latent factors. We have Procrustes aligned
the underlying coordinates U� (squares) with the B bootstrap
replicates. The fact that the ellipses contain most squares
suggests that the bootstrap accurately reflects uncertainty in
the estimated projections. In fact, for the parametric and
nonparametric approaches, the empirical coverage rates of these
ellipses are 96.4% and 95.2%, respectively. On the other hand,
the compromise approach appears to be overly conservative,
with a 99.9% coverage. This qualitative relationship between the
sizes of confidence area sizes arises in the remaining simulations
and data analysis as well, suggesting that though this simulation
is a highly simplified setup, it captures some general features of
the three proposed bootstrap approaches.

3.2. Spatial Point Process

Our second simulation generates a collection of images using a
point process whose parameters vary from image to image. Intu-
itively, each image represents cells viewed through a microscope,
and different latent parameters influence the cell ecosystem. A
single response value y is associated with each combination of
latent parameters. Figure 3 gives example images for varying
y. We generate 10,000 of these 64 × 64 × 3-dimensional RGB
images. In contrast to the previous simulation, which used a
simplified SVD-based feature extractor, this dataset requires
algorithmic feature learning to transform the image data into
vector representations. Therefore, this dataset provides a more
realistic setting for comparing the proposed strategies for evalu-
ating embedding variability.

3.2.1. Generation
We sample the locations of new cells using an intensity function
drawn from a two-dimensional marked Log Cox Matérn Process
(LCMP) (Diggle et al. 2013). Specifically, we apply the following
steps. Define the correlation between pixels x, y ∈ R

2 using a
Matérn covariance function,

Cν,α(‖x − y‖) = σ 2 21−ν

�(ν)

(√
2ν

‖x − y‖
α

)ν

Kν

(√
2ν

‖x − y‖
α

)
,

(9)

where α acts like a bandwidth parameter and ν controls
roughness. Next, simulate a nonnegative intensity function
�(x) along the image grid using log �(x) ∼ N

(
0, Cν�,α�

)
,

where Cν�,α� is the covariance matrix induced by (9). This
function is a baseline intensity that determines the location of
cells, regardless of cell type. Our LCMP has R classes (cell types)
with relative frequencies governed by additional processes
log Br (x) ∼ N

(
βr , CνB,αB

)
. These processes provide relative

frequencies for each class across locations x. The intercept βr
modulates the rth class’ frequency across all pixel coordinates.
Given these intensity functions, we simulate N cell locations

6 K. SANKARAN

Figure 3. Example images for low (top), average (middle), and high (bottom) values of yi . Three relative intensity functions Br (x) are generated for each sample, shown
as background heatmaps. Samples drawn from each process are overlaid as circles. The final images combine points across processes, removing the underlying intensity
function, which is unavailable to the feature learner. Smaller values of yi are associated with smoother, less structured intensity functions.

through an inhomogeneous Poisson process with intensity
�(x). For a cell at location x, we assign it to cell type r
with probability Bτ

r (x)∑R
r′=1 Bτ

r′ (x)
. τ is a temperature parameter

controlling the degree of mixedness between cell types at a given
location.

Finally, we vary the number and sizes of cells. The number
of cells per image is drawn uniformly from 50 to 1000. The cells
from class R are drawn with a random Gamma (5, λr) radius.
Supplementary Table 1 summarizes all parameters used to gen-
erate each image. Each parameter is drawn uniformly within
its range, which has been chosen to provide sufficient variation
in image appearance. These parameters are the true underlying
features associated with the simulated images, giving the most
concise description of the observed variation. The response y is
a hand-specified linear combination of these parameters and is
detailed in Supplementary Section 2.

3.2.2. Feature Learning
We study how the following parameters influence the estimated
confidence areas,

• Learning versus inference split sizes: We vary the proportion
of data used for learning and inference. We sample I so that
1
n |I| ∈ {0.15, 0.5, 0.9}.

• Models trained: For feature extractors, we train CNN, VAE,
and RCF models on the learning split I.

• Model complexity: We train VAEs whose hidden layer
has dimensionality P ∈ {32, 64, 128}. Similarly, we vary
the number of first-layer convolutional filters in the CNN
model across P ∈ {32, 64, 128}. For the RCF, we use P ∈
{256, 512, 1024} random features. This increase reflects that
more random features must be considered before identifying
a subset of predictive ones.

• Bootstrap method: We use the parametric, nonparametric,
and compromise bootstrap strategies.

Figure 4 shows the activations of learned features across 2000
images for two perturbed versions of the training data when
90% of the data are used for inference and P = 64 (CNN,
VAE) and 512 (RCF). Note that, across algorithms, there is
no simple correspondence between learned and source features
(i.e., parameters of the underlying simulation). Instead, there are
clusters of learned features with similar patterns across samples.
We also find subsets of features across all models that are only
weakly correlated with any source feature. This lack of one-
to-one correspondence between true and learned features is
consistent with the phenomenon of distributed representations
in neural networks (Hinton 1984; Le and Mikolov 2014).

Certain source features appear easier to represent than others
because many learned features are strongly correlated with them.
For example, many features are correlated with Ni, the total
number of cells in the image, and λi1, which controls the size
distribution of the first cell type. Depending on the model, the
bandwidth αir, roughness νir, and prevalence βik parameters are
either only weakly or not at all correlated with learned features.
Even when features detect variation in αir and νir, they cannot
disambiguate between these two parameters. Finally, the CNN
and VAE features tend to be more clustered. In contrast, the RCF
features show more gradual shifts in correlation strength. They
also show only slight variation in correlation strength across
features other than λi1 and Ni.

3.2.3. Embedding Variability
Figure 5(a) gives example confidence areas across models and
bootstrapping approaches. In contrast to Figure 2 from the low-
rank simulation, the areas from the nonparametric bootstrap

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

Figure 4. Each feature learning algorithm learns a distributed representation of the true underlying features in the simulation. Within each heatmap, rows correspond to
the parameters in Supplementary Table 1. Columns are activations of learned features and have been reordered using the package (Barter and Yu 2018). The shading of a
cell gives the correlation between the true and learned features. Darker and lighter colors indicate stronger and weaker correlations, respectively.

are larger than those from the parametric bootstrap. This dis-
agreement suggests that the proposed mechanism of (4) and (8)
underestimates variability in learned features in more complex
feature learning settings. We recommend using the nonpara-
metric confidence areas whenever a disagreement is observed
between nonparametric and parametric bootstrap strategies.
These areas are more conservative and reflect variation across
runs. As before, the compromise bootstrap has larger confidence
areas than either alternative.

We next analyze how experimental factors influence the qual-
itative appearance of estimated confidence areas. The RCF tends
to have smaller confidence areas than the CNN and VAE. This
suggests that shallower models may have more stable learned
feature embeddings, an observation with implications for final
model selection, depending on the downstream tasks within
which these embeddings are used. Figure 5(b) shows confi-
dence areas for a single model (CNN) and bootstrap proce-
dure (parametric) across a range of model complexities and
split proportions. For larger P, projections are further from the
origin, suggesting larger activations on average. However, the
size of each sample’s confidence area does not appear to vary
across model complexities, and overparameterization may not
be a cause for concern. Finally, the fraction of data used for
feature learning does not appear to affect the strength of the
association with the response or the size of the confidence areas.

Hence, this algorithm hyperparameter does not substantially
influence downstream interpretation. Supplementary Section 3
gives corresponding figures for the other models.

4. Data Analysis

To illustrate the application of our proposed methods, we next
analyze the spatial proteomics dataset reported in Keren et al.
(2018), which found that spatially homogeneous Triple Nega-
tive Breast Cancer (TNBC) tumors were associated with more
aggressive disease. Classical proteomics methods measure pro-
tein expression levels for a collection of cells but cannot specify
each cell’s location. In contrast, these data provide an image
delineating cell boundaries and the underlying protein expres-
sion levels. We will work with spatial cell delineations but not
protein expression levels. This allows us to study feature learning
within the images without linking expression and image data,
which is a complex integration problem. Given this simplifica-
tion, the data are 2048 × 2048-dimensional images, one for each
of 41 patients. Each pixel has a value of 1 through 7, encoding
the cell types associated with each pixel. To ensure that the cell
types are treated as categorical, we transform pixels to their one-
hot encodings, resulting in a collection of 2048×2048×7 binary
matrices.

8 K. SANKARAN

Figure 5. (a) The 95% confidence areas associated with projections from the spatial point process simulation. Each point corresponds to one image. Only the setting with
90% of the data used for feature learning and the midsize models (P = 64 for the CNN and VAE, P = 512 for the RCF) is shown. (b) A view of confidence areas for the CNN
across a range of learning split fractions (0.15, 0.5, 0.9) and model complexities (P = 32, 64, 128), all using the nonparametric approach.

4.1. Feature Learning

To set up a prediction problem, we split each image into
512 × 512 × 7 patches. Patches from 32 of the patients are
reserved for feature learning. Four among these 32 are used
to tune algorithm parameters. As a response variable, we use
yi = log

(
#{Tumor cells in xi}

#{Immune cells in xi}
)

. These yi provide the signal for
the supervised feature learners. Example cell patches are shown
in Figure 6. We fit the same models (CNN, VAE, and RCF)
as discussed in Section 3, varying model complexity over the
same parameters as before. As a baseline, we compare against
a ridge regression with pixel-wise composition features. We
train a model with y as the response and the average number
of pixels in each cell-type category as a seven-dimensional
feature vector. This comparison helps to determine whether the
model has learned interesting features for counting cells, like
cell size and boundaries, rather than simply averaging across
pixel values. Indeed, Figure 7 shows that, except in models with
low capacity P, performance is improved when learning features
algorithmically.

4.2. Embedding Variability

To characterize features and their uncertainty, we perform B
= 100 iterations for each of the parametric, nonparametric,

and compromise bootstrap methods applied to samples from
the nine patients in the inference set. Figure 8 provides two-
dimensional projections for fixed model complexities. All meth-
ods learn to differentiate between patches with small and large
values of yi, even the VAE, which is unsupervised. Compar-
ing rows, the RCF appears to give the most stable representa-
tions, while the coordinates for the VAE have larger confidence
areas in general. Specific axis directions tend to be more uncer-
tain than others, reflected by the eccentricity of ellipses. For
example, viewing estimates from the nonparametric approach,
the VAE projections have the highest uncertainty for low val-
ues of Dimension 2. Analogously, high values of Dimension 2
have high uncertainty in the RCF. In either case, we should be
more careful interpreting differences between samples along this
direction.

For the CNN and RCF, the three bootstrap approaches give
qualitatively similar conclusions about regions with higher and
lower embedding precision, though the average sizes of the
confidence areas differ. In this application, the size of confidence
areas for the compromise approach seems intermediate between
the parametric and nonparametric approaches. For the VAE, the
bootstrap approaches do not appear to agree. The compromise
approach generally gives much larger confidence areas, poten-
tially reflecting a failure of the Procrustes alignment. As in the
spatial point process simulation, we find few differences in the

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 9

Figure 6. Example patches from the TNBC data. Panels are ordered by yi , the (log) fraction of cells they contain that belongs to the tumor. This relative fraction of tumor
cells provides a signal for the supervised algorithms, whose goal is to place patches from new patients along this gradient correctly.

Figure 7. Relative performance of feature learning strategies on the TNBC data. Linked points come from the same bootstrap replicate. The solid black line gives the baseline
ridge regression approach using the manually generated raw pixel counts for each cell type as predictors. Predictions from the four patients used to tune each method are
omitted; this split has few patches, and the estimated mean squared errors have high variance.

embedding uncertainty across models with different complexi-
ties; see Supplementary Figure 10.

Figure 9 overlays example patches onto aligned coordinates.
These patches support the interpretation of the learned feature
embedding. In the CNN, samples in the bottom right have a
high fraction of immune cells, those on the top left are mostly
tumor cells, and those at the top right have lower cell density.
The confidence areas in Figure 8 suggest that embeddings of
tissues with a high fraction of immune cells tend to show more
variability across bootstraps. The lower right region of the VAE
has high cell diversity, and the upper left has a lower density.
Regions with higher cell diversity and larger proportions of
immune cells also have less precisely estimated embeddings,
which is consistent with the regions of high variability observed
in the CNN embeddings. The RCF’s first dimension similarly
reflects the tumor versus immune gradient. The smaller con-
fidence areas along this axis suggest that the feature extractor
more reliably captures this gradient than any variation across
Dimension 2. Overall, deep feature learners appear to have more
variable embeddings than the RCF, especially for patches from
immune-rich tissue samples. Therefore, if the ultimate goal is a

visual comparison of sources of spatial variation, the RCF may
yield more reliable conclusions. If the CNN or VAE are still
preferred, their embeddings for immune-rich samples should be
treated more skeptically.

5. Discussion

We have adapted approaches to bootstrapping PCA to sup-
port the evaluation of embedding variability in the algorithmic
feature learning context. To contrast these proposals, we have
used two simulation studies. Their experimental results suggest
that, in more complex settings, a parametric bootstrap based
on a single set of learned features does not reflect the degree
of uncertainty present when comparing features derived from
independently trained models. In contrast, a nonparametric
approach yielded more realistic confidence areas. In addition
to comparing alternative bootstrap methods, we evaluated the
influence of data and model characteristics on the estimated
confidence areas. We found that algorithms could differ dra-
matically in the size of their confidence areas but that model
complexity within a single algorithm has little impact.

10 K. SANKARAN

Figure 8. Confidence areas from the TNBC application. Points are shaded by yi = log
(

#{Tumor cells in xi}
#{Immune cells in xi}

)
, which provides the supervisory signal to the CNN and RCF

during feature extraction. Models and bootstrap procedures are arranged along rows and columns, respectively. Only the models with intermediate complexity (P = 64 for
the CNN and VAE, P = 512 for the RCF) are shown. Analogous figures for other P are given in the supplementary materials.

Figure 9. A version of the nonparametric bootstrap column from the embeddings in Figure 8, overlaying representative samples across the learned feature space. Cells are
drawn as in Figure 6. The overall shape of the region in which images are displayed mirrors the shape of the cloud of points in Figure 8.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 11

Our empirical results raise several questions for further study.
First, though we have found coverage rates for the parametric
and nonparametric bootstraps to be acceptable in the low-rank
simulation, we have yet to study the theoretical properties of
these procedures. A theoretical guarantee would be worthwhile,
and it could clarify differences that arise in projection uncer-
tainties between bootstrap and feature learning approaches. A
related challenge is exploring the alignment method’s influence
on the resulting bootstrap regions. We have relied on a simple
Procrustes rotation to align the principal subspaces learned by
different bootstrap replicates of complex feature learning algo-
rithms. More powerful alternatives could be considered for both
dimensionality reduction and alignment. Further, for the CNN
and RCF models in the data analysis example, we find that the
sizes of confidence areas for the compromise approach are inter-
mediate between those for the parametric and nonparametric
bootstraps. However, in both simulations, these confidence areas
tend to be larger, and the method is unnecessarily conservative.
A better understanding of how the resampled residuals Eij are
influenced by the presence of multiple feature learners could
yield improved implementations of the compromise bootstrap
method.

As algorithmic feature learning methods play more promi-
nent roles in scientific problems with non-matrix structured
data, it is natural to attempt to quantify the precision with
which the associated learned representations are estimated, as
discussed here. More generally, uncertainty can propagate to
downstream tasks that depend on these learned features. This
uncertainty may depend on the data modality and learning
algorithms used. Calibrating inferences to account for repre-
sentational uncertainty across data modalities and analytical
workflows presents an important area for future work.

Supplementary Materials

Appendix: A PDF with additional supporting materials. Includes sections
describing details of the spatial point process simulation setup and
explaining how to access data and reproduce all analysis. Also provides
supplementary figures referred to within the main manuscript. (supple-
ment.pdf, PDF document)

Acknowledgments

The author thanks Susan Holmes, Karl Rohe, three reviewers, the asso-
ciate editor, and the editor for feedback which improved the manuscript.
Research was performed with assistance of the UW-Madison Center For
High Throughput Computing (CHTC).

References

Barter, R. L., and Yu, B. (2018), “Superheat: An R Package for Creating
Beautiful and Extendable Heatmaps for Visualizing Complex Data,”
Journal of Computational and Graphical Statistics, 27, 910–922. [7]

Chateau, F., and Lebart, L. (1996), “Assessing Sample Variability in
the Visualization Techniques Related to Principal Component Anal-
ysis: Bootstrap and Alternative Simulation Methods,” in Compstat,
eds. D. Edwards, N. E. Raun, pp. 205–210, Heidelberg: Springer.
[1,2]

Diggle, P. J., Moraga, P., Rowlingson, B., and Taylor, B. M. (2013), “Spatial
and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geo-
statistical Paradigm,” Statistical Science, 28, 542–563. [5]

Elguero, E., and Holmes-Junca, S. (1988), “Confidence Regions for Pro-
jection Pursuit Density Estimates,” in Compstat, eds. D. Edwards, N. E.
Raun, pp. 59–63, Heidelberg: Springer. [1,2]

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009), “Visualizing
Higher-Layer Features of a Deep Network,” University of Montreal, 1341,
1. [1]

Friedman, J., Hastie, T., and Tibshirani, R. (2001), “The Elements of Statis-
tical Learning (Vol. 1) (No. 10). Springer Series in Statistics, New York:
Springer. [2]

Gross, S. M., Taylor, J., and Tibshirani, R. (2015), “A Selective Approach to
Internal Inference,” arXiv preprint arXiv:1510.00486. [1,3]

Hinton, G. E. (1984), “Distributed Representations,” Technical Report
CMU-CS-84-157. [6]

Josse, J., Wager, S., and Husson, F. (2016), “Confidence Areas for Fixed-
Effects PCA,” Journal of Computational and Graphical Statistics, 25,
28–48. [1,2,4]

Ke, Z. T., and Wang, M. (2022), “Using SVD for Topic Modeling,”
Journal of the American Statistical Association, 1–16. DOI:10.1080/
01621459.2022.2123813 [1]

Keren, L., Bosse, M., Marquez, D., Angoshtari, R., Jain, S., Varma, S., et
al. (2018), “A Structured Tumor-Immune Microenvironment in Triple
Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging,”
Cell, 174, 1373–1387. [7]

Kim, K., Li, B., Yu, Z., and Li, L. (2020), “On Post Dimension Reduc-
tion Statistical Inference,” The Annals of Statistics, 48, 1567–1592.
[1]

Kingma, D. P., and Welling, M. (2014), “Auto-Encoding Variational Bayes,”
2nd International Conference on Learning Representations, ICLR 2014
Conference Track Proceedings. [2]

Le, Q., and Mikolov, T. (2014), “Distributed Representations of Sentences
and Documents,” in International Conference on Machine Learning, pp.
1188–1196. [6]

Nguyen, A., Yosinski, J., and Clune, J. (2019), “Understanding Neural Net-
works via Feature Visualization: A Survey,” in Explainable ai: Interpreting,
Explaining and Visualizing Deep Learning, eds. W. Samek, G. Montavon,
A. Vedaldi, L. K. Hansen, K.-R. Müller, pp. 55–76, Cham: Springer.
[1]

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J. (2017), “Svcca: Sin-
gular Vector Canonical Correlation Analysis for Deep Learning Dynam-
ics and Interpretability,” in Advances in Neural Information Processing
Systems, pp. 6076–6085. [2]

Rahimi, A., and Recht, B. (2008), “Weighted Sums of Random Kitchen
Sinks: Replacing Minimization with Randomization in Learning,”
Advances in Neural Information Processing Systems, 21, 1313–1320.
[2]

Van Den Oord, A., and Vinyals, O. (2017), “Neural Discrete Representation
Learning,” in Advances in Neural Information Processing Systems, pp.
6306–6315. [2]

Wang, S., McCormick, T. H., and Leek, J. T. (2020), “Methods for Cor-
recting Inference based on Outcomes Predicted by Machine Learning,”
Proceedings of the National Academy of Sciences, 117, 30266–30275.
[1,3]

	Abstract
	1. Background
	1.1. Feature Learning
	1.2. Principal Components Analysis and the Bootstrap

	2. Bootstrap Strategies
	2.1. Nonparametric Bootstrap
	2.2. Parametric Bootstrap
	2.3. Compromise Bootstrap

	3. Simulations
	3.1. Low-Rank Model
	3.2. Spatial Point Process
	3.2.1. Generation
	3.2.2. Feature Learning
	3.2.3. Embedding Variability

	4. Data Analysis
	4.1. Feature Learning
	4.2. Embedding Variability

	5. Discussion
	Supplementary Materials
	Acknowledgments
	References

