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Abstract

By linking conceptual theories with observed data, generative models can
support reasoning in complex situations. They have come to play a central
role both within and beyond statistics, providing the basis for power anal-
ysis in molecular biology, theory building in particle physics, and resource
allocation in epidemiology, for example.We introduce the probabilistic and
computational concepts underlying modern generative models and then an-
alyze how they can be used to inform experimental design, iterative model
refinement, goodness-of-fit evaluation, and agent based simulation.We em-
phasize a modular view of generative mechanisms and discuss how they can
be flexibly recombined in new problem contexts. We provide practical il-
lustrations throughout, and code for reproducing all examples is available
at https://github.com/krisrs1128/generative_review. Finally, we observe
how research in generative models is currently split across several islands of
activity, and we highlight opportunities lying at disciplinary intersections.
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1. INTRODUCTION

In the classroom, a simple trick for teaching complex statistical ideas is to first generate a dataset
from a familiar model. A simulation can turn a problem of logic into one of observation. For
example, to introduce the concept of aGaussianmixturemodel, one approach is to write amarginal
density,

p (x) = πφ

(
x− µ1

σ1

)
+ (1 − π )φ

(
x− µ2

σ2

)
,

but, following Holmes & Huber (2018), it is much more evocative to give a demonstration:

1. Flip a coin, zi ∼ Ber (π ).
2. Simulate

xi|zi ∼
{
N
(
µ1, σ 2

1

)
if zi comes up heads,

N
(
µ2, σ 2

2

)
otherwise.

3. Repeat this for i = 1, . . . ,N and make a histogram of xi.

This is a simple setting, but it already exhibits some salient features of generative models. First,
a more complex mechanism is composed from simple building blocks. Second, it invites experi-
mentation, and we can easily generate datasets with, say, different biases π . Furthermore, it is top
down in the sense that we specify latent variables and parameters before observing xi. Finally, it
makes model evaluation natural, since both the model and real data can be understood in terms
of histograms in the data space.

This capacity to clarify has been recognized since even before the widespread use of
computers—for example, the generation of mixtures in Teicher (1960) or the language of particles
in Metropolis & Ulam (1949) at the onset of the Monte Carlo revolution. These early efforts have
matured into methods that enable simulation and inference in very general settings. For example,
Markov chain Monte Carlo (MCMC) and Gibbs sampling have made it possible to work with
models whose normalizing constants are unknown (Diaconis 2009), approximate Bayesian mod-
eling supports inference even when likelihoods are inaccessible (Beaumont 2019), and measures of
distributional discrepancy enable iterative model refinement (Anastasiou et al. 2021). Generative
models now play a central role throughout design of experiments, data modeling, inference (with
or without likelihoods), and decision-making under uncertainty.

Generative models are also invaluable communication tools. For instance, it can be difficult
to raise identifiability concerns with collaborators, especially when the statistical analyses require
specific technical knowledge. However, a simulation showing how alternative scenarios can result
in indistinguishable outputs makes nonidentifiability clear (Brun et al. 2001). Indeed, this idea has
taken on a life of its own, resulting in a literature outside statistics on “sloppy” (i.e., nonidentifiable)
models (Gutenkunst et al. 2007).

Modern generative models relieve the researcher from needing full distributional spec-
ifications. There are now procedures combining optimization with simulation to minimize
discrepancies betweenmodel and data, even when complete densities are unavailable. For example,
Gutmann & Corander (2016) develop an adaptive modeling strategy based on Bayesian opti-
mization. More generally, the gap between statistical and simulation modeling is narrowing, with
domain-specific simulators in single-cell genomics and high-energy physics beginning to make
contact with ideas like optimal experimental design (Sun et al. 2021) and the Neyman-Pearson
lemma (Dalmasso et al. 2021), for instance.

At the other end of the specification spectrum, many scientific communities, ranging from
economics and sociology to biology and physics, have refined bottom-up generative models based
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on theoretically guided rules. These models, often called agent based models (ABMs), simulate
complex systems by providing rules that govern interactions across large numbers of similar agents
(An et al. 2009, Grazzini et al. 2017). Such models have been used for modeling disease dynamics,
and we show how they can be used to infer mutation rates in butterflies and have assisted policy
makers during the COVID-19 pandemic.

Our review follows the timeline of a statistical workflow: Starting in Section 2 we use gener-
ative models for power computations and experimental design, guiding decision-makers through
a choice about blocking designs, and outlining the dense landscape of R packages that use gen-
erative models for power and design computations. Section 3 covers model building from the
perspective of a grammar of generative models, expressing complex dependencies by composing
elementary stochastic modules. Section 4 reviews goodness-of-fit and discrepancy measures, and
we provide an example of using statistical learning methods to partially automate the process of
evaluating a model’s approximation quality. In Section 5, we show several examples where gener-
ative models enable the study of complex systems, like adaptation of a population through natural
selection and the control of an epidemic outbreak. Finally, the conclusion outlines ideas that are
driving current progress in the field, which have their origins across many communities.We high-
light the interdisciplinary, future challenges in generative modeling that will benefit scientists and
policymakers.

2. EXPERIMENTAL DESIGN

Awise choice of experimental design can deliver powerful inferences even when resources are lim-
ited. Conversely, a careless approach can make some inferences impossible, no matter the analysis
strategy. For this reason, the design of experiments has a long history in statistics (Fisher 1937,
Cox & Reid 2000). However, the emergence of studies where data are collected from a variety
of populations, environments, or sensing devices has prompted further development. Indeed, the
increasing ease in scientific communication and data sharing have supported the implementation
of studies of unprecedented scope. In this section, we review some challenges of planning modern
studies and the ways generative modeling has become integrated into experimental design.

Regardless of the application context, a few pressing questions arise in any experimental plan:

■ How effectively will we be able to measure a quantity of interest? Are there alternative
designs that would improve power?

■ Are there certain competing scientific scenarios that will be impossible to disambiguate given
the data generated?

■ How many samples will be enough to achieve a certain degree of confidence in the strength
and directions of effects?

■ Given a fixed budget limit, how should controllable factors be varied?

To answer these questions systematically, classical experimental design arrived at a few core
principles, like randomization, blocking, factorial, and sequential design. These concepts provide
a language for expressing important considerations in any design.However, they do not necessarily
guide the planner toward any particular choice. Additional criteria are needed for (a) evaluating
the utility of a design and (b) navigating the space of possibilities. Classical experimental design
provides the former, generative models the latter. Notions of optimality are defined with respect
to a model fitting procedure. For example, suppose a model is fit using N design points x1: N, and
denote the variance of the associated prediction surface at configuration x by Var[ŷx1:N (x)]. Then,
a design x∗

1:N minimizing
∫
E Var[ŷx∗1:N (x)]dx over the set of all candidate designs x ∈ E is called

I-optimal. A number of other optimality criteria have been proposed (see, e.g., John & Draper
1975, Cox & Reid 2000).
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These quantitative criteria measure efficiency changes induced by particular design choices,
e.g., blocking or sample size. For simple models and experimental universes E , it is possible to
derive optimal designs in closed form. For example, when E = [−1, 1]K and linear regression is
used, then a budget of N = 2K samples is most efficiently used by placing all points at corners of
the cube [−1, 1]K. In more complex settings, however, analogous mathematical results may not be
available.

2.1. Challenges in Modern Experimental Design

To guide selection of a design, we can simulate from plausible generative models and empirically
estimate the efficiency of competing designs. Before discussing this approach in detail, we note
the sources of complexity in modern design.

Often, modern studies focus on systems with many interacting components, and investigators
hope to attribute observed properties to subtle structure within these systems. For example, in
biology, it has become increasingly common to conduct multidomain studies, gathering multiple,
complementary assays for each sample under consideration (Bolyen et al. 2019, Lähnemann et al.
2020). Counts of microbial species, called taxa, may be studied in conjunction with metabolomic
and host gene expression profiles and even stained in-situ images. In this setting, different ex-
perimental treatments may affect both individual system components and their interactions, any
of which may have consequences for host health. Adding to the difficulty of characterizing these
multicomponent systems is the fact that studies increasingly supply data across multiple scales and
modalities. For example, in ecology, a climate model may provide biome-level forecasts, a satellite
product may highlight kilometer-level summaries, and ground sensor measures may provide pre-
cise but localized data. Using these data to support climate change adaptation requires integration
across all sources (Schmitt & Zhu 2016, Diffenbaugh et al. 2020).

This high degree of data heterogeneity creates difficulties for characterizing optimal designs.
Compounding this challenge is the diversity of modern sampling and analysis strategies. For ex-
ample, in longitudinal studies, experimenters must choose sampling times, and in multidomain
studies, the choice of assays per subject can be adjusted. In some cases, multiple treatments
and populations may be studied simultaneously. Indeed, interest may lie in differential treat-
ment effects across subpopulations. Moreover, there may be a trade-off between high-quality but
expensive samples and low-quality but abundant proxies.

2.2. Simulation Modeling for Experimental Design

At first, these complexities might seem insurmountable. However, it is often possible to guide
decisions using simulation, and realistic generative mechanisms can provide precise material for
decision-making. To compare sampling strategies, it is valuable to imagine hypothetical exper-
imental outcomes and their subsequent data analysis results (Müller 2005, Huan & Marzouk
2013, Y. Zhang et al. 2019). This provides an iterative, adaptive alternative to the fixed, universal
strategies common in classical experimental design:

1. Propose a generative mechanism p(x; e, η) that simulates a range of plausible, hypothetical
datasets x given a design e ∈ E and generative parameters η � H.

2. Implement an initial version of the analysis. Quantify the utility of the analysis with a func-
tion U(x, e, η), and investigate how design and simulation choices influence the expected
utility.

3. Explore the design space e ∈ E to identify regions of high expected utility, and refine the
generative mechanism to provide structures x similar to those seen in earlier studies.
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We first illustrate this process using two concrete design problems.We then survey how more
advanced versions of this approach have proliferated through application-specific packages and
workflows.

2.2.1. Blocking in generative count models. Imagine we are designing a study whose purpose
is to evaluate the influence of three interventions on microbiota community composition. For
example, one intervention might be a diet change, and we hope to identify taxa whose abundances
are systematically elevated or depressed following the intervention.The task is to guide the choice
of the number of samples and the allocation of treatments across study participants. Previous
studies point to substantial subject-to-subject variation in taxa composition. For this reason, a
blocked design seems appropriate, where each subject is assigned each of the three interventions
in random order. We argue that, by allowing estimation of a subject-level baseline, such a design
will allow detection of small treatment effects even in the presence of large subject-to-subject
differences. To our surprise, we face resistance to this proposal—we are told that asking each
study participant to contribute three samples creates an undue burden and risks increased study
dropout.

To sharpen an analysis of the trade-offs involved, a simulation can be used. Suppose that the
biological specimen, sample i’s community composition, is drawn from

xi|pi ∼ Mult (Ni, pi ),

pi ∼ S
(
βti + τsi

)
,

βt,A ∼ N
(
0, σ 2

β

(
I|A| 0
0 0|AC|

))
,

τs ∼ N
(
0, σ 2

τ ID
)
,

1.

where S is the softmax function, S (z) = exp(zd )∑D
d′=1 exp(zd′ )

, and β t and τ s encode treatment (t = 1,

2, 3) and subject effects across the D species, respectively. Let A designate the set of taxa that
exhibit any treatment effect.Whenever σ 2

τ ≫ σ 2
β , it is clear that blocking is necessary; conversely,

when σ 2
τ ≪ σ 2

β , there is no reason to create an extra burden on study participants. But what is the
appropriate decision in more intermediate cases?

We study the question by simulating from the model in Equation 1 under both blocked and
unblocked designs and then sample from the posteriors p(β|x1:N) using MCMC. We set N = 60
as the total number of samples (60 subjects in the unblocked design, 20 for the blocked design)
and D = 25 features. We suppose that σ 2

β = 0.5 and σ 2
τ = 2 and that only features d = 1, . . . , 10

contain true effects.
Figure 1 shows the resulting posteriors.Both designs support recovery of the direction for each

treatment effect and are shrunken toward 0, a natural consequence of the model’s hierarchical
structure. However, for each taxon d, we note that the blocked design has narrower posteriors
p(β td|x1:N). Specifically, the marginal variances under the unblocked design are on average 1.3
times larger than those under the blocked design. Practically, this leads to reduced power against
weak effects in the unblocked design; consider, for example, the difference in estimated effects
for taxon 8. Perhaps even more troubling are the instances in the unblocked design where we
might be misled into believing in the existence of a treatment effect; consider, for instance, taxon
19 or 21. This is likely the consequence of a few subjects having large (or small) abundances for
these taxa simply by chance, and then dragging their corresponding treatments up (or down).
Though the unblocked design gives theoretically unbiased inferences, in finite samples we still
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Figure 1

A comparison of posterior treatment effects estimated using unblocked (top row) and blocked (bottom row) designs. Each column
corresponds to one taxon. Circles mark the true treatment effects. Note that only the first 10 of 25 taxa have any nonzero treatment
effects.

risk spurious associations. The repeated subject-level samples in the blocked design allow these
outlier taxa-subject combinations to be directly accounted for.

Overall, blocking seems natural given this hypothetical setup. However, our point is less the
final choice of design than the comparison process. If experience had suggested a different ratio
of σ 2

β to σ 2
τ , the same process may have led us to the opposite decision. Moreover, this simple

analysis could be enriched in several directions. It is possible to model differential study dropout
in the two designs. If data were available from studies with similar expected treatment effects, we
could tailor the sizes of σ 2

β and σ 2
τ to more closely match past data. Finally, an interactive version

of Figure 1 would support rapid comparison across simulation parameters.

2.2.2. Sample allocation in longitudinal studies. Even though the generative mechanism in
the previous example is complex, the associated design space is simple—the choice is between
either a blocked or an unblocked design. In more complex design spaces, it is impractical to eval-
uate all candidate designs. In this setting, an organized search over candidates can allow the more
efficient discovery of promising designs (Müller 2005, Huan & Marzouk 2013). To make this
search possible, we assume that utility tends to vary smoothly over the design space. Designs sim-
ilar to those that are known to be ineffective can be rapidly discarded, and exploration can be
concentrated on areas of higher expected utility or uncertainty.

To illustrate, consider the problem of designing an experiment to evaluate the short- and long-
term effects of an intervention—e.g., the effect of antibiotic treatment on a bacterial strain of
interest. The intervention effect is thought to be strong but brief (Figure 2). Sampling is costly,
and in the absence of a formula for the optimal sample placement, we turn our attention to
simulation.

In principle, the design space can consist of the locations of the N = 25 sampling points di-
rectly. However, searching across [−10, 10]N becomes difficult for even moderate N. Instead, we
suppose that sampled timepoints are drawn from Pw := ∑K

k=1 wkI (Sk ), a mixture of uniforms over
predefined sets Sk (here, we partition [0, 1] into K = 7 equal length intervals) but with weights to
be optimized. In this way, we reduce the search to the K − 1–dimensional simplex.
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Figure 2

Example longitudinal fits from data simulated according to random designs. The solid orange curve is the unknown intervention effect,
and the green curves show spline fits based on the data from that panel’s run. Panels are sorted from those with the lowest to those with
the highest integrated mean squared error.

Suppose that f is the true effect and f̂x is our estimate based on specific sampling times x.
We write the expected loss for a given set of weights by L(w) := Ex∼Pw

[
∫
[−10,10]( f̂x(z) − f (z))2dz].

This is an ideal loss function that can be used to search over the simplex; it can be empirically
approximated by sampling B different designs xb from a proposed Pw, computing an estimate f̂xb
(we use a spline with six degrees of freedom), and then computing 1

nz

∑B
b=1
∑nz

i=1( f̂xb (zi ) − fxb (zi ))2

across a dense grid zi � [−10, 10].
The loss L(w) can be used to compare alternative designs w, but evaluating it across all of

1K − 1 is computationally impractical. As an alternative, we apply Bayesian optimization to itera-
tively guide our search toward promising w (Shahriari et al. 2015). This approach first places a
Gaussian process (GP) prior on the loss function L(w). This encodes the belief that no particular
configuration of w should be favored a priori, but that the loss should vary smoothly as a function
of w. The optimization strategy balances exploration and exploitation of competing designs, nar-
rowing in on promising configurations without prematurely ruling out alternatives. Specifically,
we first randomly sample an initial set of weightsw1, . . . ,wNinit from a logistic-normal distribution.
For each weight wi, we evaluate L(wi). The paired wi and L(wi) are used to compute a posterior.
Given this posterior, we findw with small values ofE[L(w)] − Var(L(w)), representing points with
either low expected loss or high uncertainty. We evaluate L(w) at these candidate w, update the
posterior, and continue until convergence.

A few choices of Pw discovered through this process are given in Figure 3. These distributions
place elevated weight near the intervention, matching the intuition that sampling should be dens-
est in regions where the effect is expected to vary the most. To summarize, the overall approach
is as follows:

■ Specify a generative mechanism. In this example, it is the shape of the unknown treatment
effect and the distribution of random variation around the true effect.

■ Define a design space and loss. This is necessary to formally evaluate competing designs.
Here, the design space is the choice of weights in Pw and the loss is the average estimation
error when using sampling times drawn from Pw.
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Figure 3

The four distributions Pw giving the lowest estimated loss L(w), identified using Bayesian optimization. Panel names give the estimated
loss of the associated configuration. Comparing with Figure 2, we observe that the learned mass functions place high weight in the
region of the peak. All but the third configuration also place high weight near start and end times.

■ Optimize over designs. Iteratively evaluate losses on candidate designs, choosing candidates
in a way that balances exploration with exploitation. In this example, we used Bayesian
optimization.

Of the three steps, the final optimization is the most automatic. Specification of the generative
mechanism and the loss require care.That said, the full modeling toolkit can be applied to improve
the faithfulness of the specification, giving the designer considerable flexibility.

2.2.3. Software ecosystems for design by simulation. The examples above show how simula-
tors can be built from scratch to support experimental design. However, for many interesting data
types, there are already a number of available simulators. A complete inventory of available pack-
ages for simulation-based design of experiments is not possible; a list of R packages for experimen-
tal design can be found at https://cran.r-project.org/web/views/ExperimentalDesign.html.
There are in fact hundreds of packages for doing design by simulation—we have curated a list
in Supplemental Table 1. These packages make it possible to reuse code across the community,
minimizing duplicated effort planning designs.

The simulators used within a community must be tailored to properties of the data they must
generate. Nonetheless, for design by simulation, a few properties are generally useful:

1. Calibration: We should be able to calibrate simulation outputs to match existing datasets.
Rather than simulating data de novo, public datasets and pilot studies can be used to set
expectations for a new experiment.

2. Evaluation: Metrics should be available to evaluate the discrepancy between (a) real and
simulated datasets and (b) analysis results derived from real and simulated data.

3. Control: We should be able to directly manipulate both experimental and generative pa-
rameters. A simulator that produces realistic data is not useful for power calculations if it
can only be run for a single sample size, for example.

4. Transparency: The mechanisms leading to simulated data should be interpretable and refer
to language already used within the application domain.

5. Usability: A well-documented package and interactive interface can make a simulator more
accessible, supporting its adoption.

To see how these principles can guide practice, consider how simulation packages guide exper-
imental design in single-cell genomics. A variety of simulation mechanisms have been proposed
to capture several properties common across single-cell datasets: overdispersed counts, a high de-
gree of sparsity, low effective dimensionality, and the presence of batch effects (Risso et al. 2017,
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Zappia et al. 2017,X.Zhang et al. 2019,Yu et al. 2020, Schmid et al. 2021, Sun et al. 2021,Qin et al.
2022). Most of these simulators are built from rich probabilistic or differential equations models.
For example, scDesign2models each genemarginally using a zero-inflated negative binomial dis-
tribution and then induces correlation using a copula (Li & Li 2019, Sun et al. 2021). SymSin uses
a sequential strategy to model the transformation of transcripts within a cell to observed counts
in a single-cell dataset (X. Zhang et al. 2019). Some simulators are designed with calibration and
control built in—for example, given a pilot dataset, they make it possible to simulate a version of
the data with twice as many cells but with fewer differentially expressed genes.

The community has additionally proposed a variety of metrics for evaluating the faithfulness of
these simulators. For example, gene-level distributions, cross-gene mean-variance relationships,
dataset-level sparsity, and comparability of derived dimensionality reduction visualizations have
all been used to measure discrepancy between real and simulated data (Soneson & Robinson
2018, Cao et al. 2021). Both simulators and benchmarking (comparing performances in standard
situations) have been encapsulated into packages for wider dissemination.

Note that these simulators were not originally designed with experimental design in mind—
instead, most were written to support benchmarking. This was necessary because manual
annotation of real single-cell data requires expertise and is labor-intensive. In contrast, simula-
tors come with ground truth annotations. Nonetheless, after these simulators were implemented,
they began to be used for design studies, and a later generation of simulators were written explicitly
with design studies in mind.

2.3. Experimental Design for Simulation Modeling

Evidently, generative models can inform modern experimental design. This is only one side
of the story, however—the principles of design can support the implementation of ever-more-
sophisticated simulation experiments.This has been the subject of two reviews in Statistical Science,
by Sacks et al. (1989) and, more recently, Baker et al. (2022).

Sacks et al. (1989) were pioneers who realized that even simulations of deterministic physical
systems, such as fluid dynamics and thermal energy storage, could benefit from stochastic mod-
els at the computational design step. In this setting, detailed knowledge of the data generating
mechanism means that confounding is a less central concern, and experimental design concepts
like blocking and randomization are rarely needed.However, they underline that the clever choice
of inputs can lead to more efficient use of computational resources and that these choices can be
guided by experimental design principles. For example, it is beneficial to allocate more samples
in regions with high variability, analogous to sequential design strategies used in response surface
design and kriging. Baker et al. (2022) explore subsequent developments, demonstrating how the
decision of where to evaluate stochastic simulators can be guided by the theory of space-filling
and sequential designs. They emphasize recent progress in emulating the full distribution of sim-
ulation outputs, rather than just their means. They illustrate these techniques using an application
to computational ocean science, where differential equation-based simulation models are widely
used.

3. MODEL BUILDING

It is helpful to view generative model building as a language, not simply selection from a fixed
catalog. By learning the appropriate statistical vocabulary and grammatical rules, it becomes pos-
sible to express complex dependence structures between observed and latent data in a way that
guides description and decision-making. Specifically, in the way that a language is composed
of words, generative models are composed of elementary stochastic modules. By linking these
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elements through conditional dependence relationships, it is possible to induce dependence across
both samples and measurements.

Historically, generative modeling has been criticized as unnecessarily constraining, relative to
the flexibility of algorithmic modeling (Breiman 2001). However, an effective model provides a
succinct description of the processes behind an observed dataset, and the resulting summaries
are much richer than predictions alone. Moreover, concerns about flexibility have been addressed
by advances in the number and variety of base modules amenable to computation and inference
(Ghahramani 2015, van de Meent et al. 2018). Longitudinal, spatial, count, zero-inflated, and
multidomain structure can now be routinely generatively modeled using open-source, accessible
software libraries (Wood et al. 2014, Carpenter et al. 2017, Bingham et al. 2019).

3.1. Grammar Rules

Any generative model can be written as a sequence of (potentially conditional) sampling steps.
These sampling steps can be represented mathematically, computationally, and graphically. For
example, the familiar linear regression model can be equivalently written mathematically as

yi|β ∼ N
(
xTi β, σ 2

y

)
for i = 1, . . . ,N ,

β ∼ N
(
0, σ 2

β ID
);

computationally as

beta = random_normal(D, 0, sigma2_beta)

for (i = 1. . .n)

y[i] = random_normal(N, x[i] ∗ beta, sigma2_y);

and graphically as Figure 4a.
The set of edges in the directed acyclic graph (DAG) notation is determined by the conditional

dependence structure in the original mathematical and computational formulations. Furthermore,
the for loop and the plate in Figure 4 are notationally equivalent. Both are used to encode con-
ditionally independent sampling, compressing what would be otherwise nearly identical lines of
code or large fans in the graph, respectively. Note that DAG representation omits the specific dis-
tributions used, preserving only the set of conditional dependencies. This loses information that
must be added back before formal implementation. However, it provides a convenient shorthand
for developing more complex models. The compactness of the notation facilitates comparison of
relatedmodels—a quick glance can reveal nodes or edges that are included in one but not the other.

3.2. A Tour of Stochastic Modules

Complex generative models can be built by composing simple stochastic modules. This
section reviews the most common of these elementary units.

3.2.1. Hierarchical modeling. When a dataset hasmany related, but not identically distributed,
subsets, then a hierarchical structure may be applicable (Draper et al. 1993, Gelman 2006, Teh &
Jordan 2010). In this type of module, a collection of parameters, one for each subset, is drawn from
a shared prior. This implements a form of partial pooling—information is shared across subsets,
but heterogeneous effects are reflected in the unique parameter estimates across subsets. More-
over, this facilitates adaptive estimation, strongly shrinking noisily estimated parameters toward
a global estimate while minimally affecting parameters in subsets with clear signals. The DAG
representation is provided in Figure 4b.

This structure is frequently encountered in practice. For example, when estimating differen-
tial expression across a collection of genes, the true effect for each gene can be drawn from a
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Figure 4

Directed acyclic graph representations of common stochastic building blocks: (a) linear regression,
(b) hierarchical, (c) local latent, and (d) latent Markov structure. Circles are shaded blue if the associated
random variables are observed. A directed edge is drawn if the target variable is conditionally dependent on
the source. The gray boxes represent i, . . . ,N copies of the contained variables. The observations are
contained in xi, which represents the explanatory variables; yi represents the response and zi the latent
variables, which are not observed (and thus not shaded).

shared prior, which may itself be adapted according to the distribution of observed test statistics
(Stephens 2017, Wang & Stephens 2021). When modeling multiple gene expression profiles si-
multaneously, a hierarchical model improves power by borrowing strength rather than fitting each
profile separately (Flutre et al. 2013, Stephens 2013, Zhao et al. 2016). Similarly, in political sci-
ence, county-level effects can be partially pooled, stabilizing inference in regions with few samples
(Hill 2017). In more complex settings, hierarchical components may need to be embedded within
larger generative models. For example, if the same counties were measured over time, we may
believe each county’s parameter has the potential to change slightly. Viewed more generally, the
reason this module is valuable is because large datasets rarely arise as a large collection of truly
independent and identically distributed samples ( Jordan 2011). Instead, they tend to be an amal-
gamation of related but not identical subsets—big data often arise by gluing together many small
datasets.

3.2.2. Latent variables. Modules based on latent variables provide a way to induce dependence
structure across samples or measurements. They are applicable when it is thought that data lie
within clusters or low-dimensional gradients, but the specific form of these structures is not known
in advance. In the grammar of generative models, each sample is associated with a local latent
variable and observations are drawn independently, conditionally on these latent variables (Zhang
& Jordan 2009, Blei 2014). For example, in a generative clustering model, each sample is asso-
ciated with a latent cluster indicator. For probabilistic factor models, the analogous local latent
variables are low-dimensional coordinates, and in a topic model, they are mixed memberships
across a collection of topics (Nguyen &Holmes 2017, Sankaran &Holmes 2018). In contrast, the
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parameters defining the locations of clusters, shape of the gradient, or factor loadings are
summarized by global variables.

Although different types of local and global variables induce very different types of observed
data, all models with this type of local-global breakdown have the same DAG conditional in-
dependence structure, shown in Figure 4c. As in hierarchical models, this DAG module can be
embedded within larger models to account for other problem-specific structure. Of particular
interest is latent structure that evolves over time, which we review next.

3.2.3. Latent spatial and temporal structure. In data with a spatial or temporal component,
we often expect dependence between nearby samples. For example, in a model of the audio
recording of a meeting, a latent variable zt may learn to distinguish different speakers. Since each
speaker will typically speak across an uninterrupted segment of time, we should encourage zt to
only switch occasionally. One approach is through a latent Markov model, whose DAG structure
is given in Figure 4d. In this model, the latent variables follow Markov dynamics p(zt+1|z1:t) =
p(zt+1|zt). Given these latent states, the observed data are conditionally independent, specified
by p(xt|zt). For simple likelihoods p(xt|zt) and dynamics p(zt+1|zt), this quantity can be computed
through a closed-form recursion, like the Viterbi algorithm or Kalman filter. More complex
settings are discussed in Section 3.3.2. For example, assuming that zi � {1, . . . , K}, we may define
a transition matrix P(zt+1 = k′|zt = k) with elevated weights along the diagonal, encouraging a
stickiness in states over time. If we use Gaussian likelihoods p (xt |zt = k) = N (µk,6k ), we arrive
at a version of the Gaussian mixture model where samples tend to remain in the same component
for long stretches of time. Relaxing either the Markov or discreteness assumptions leads to
further enriched models. For example, a semi-Markov DAG structure supposes that future states
zt may be modulated by the pattern of several recent states, not simply the current zt. If hard
assignment to one of K clusters is undesirable, we may adopt a mixed-membership approach,
enforcing Markov dynamics for zt lying in the simplex.

We can reason about spatial dependence similarly. For example, imagine modeling a spatial
transcriptomics dataset where each sample is a high-dimensional vector of gene expression mea-
surements for an individual cell. We expect that, in spite of the hundreds of genes measured, a
K-dimensional zi could provide a sufficient description of cell-to-cell variation. In this case, we
may seek spatial consistency across neighboring zi. This can be accomplished by using a Markov
graph, inducing dependence along a spatial grid rather than temporal chain. Alternatively, sev-
eral recent proposals place a GP prior on zi, using K output dimensions and two input (spatial)
dimensions (Townes & Engelhardt 2021, Shang & Zhou 2022, Velten et al. 2022). The resulting
smoothness in latent variables over space can aid interpretability and performance.

3.3. Inference

To draw conclusions from a model, we need to infer plausible distributions for unknown parame-
ters and latent variables. This is a separate task from specifying the generative mechanism, and a
variety of Monte Carlo and variational methods have been developed to enable inference across
different model structures. In fact, the tools for inference have matured to the point that software
is now available for generic inference, fitting models with minimal user effort. Nonetheless, it
can be instructive to explore the mechanics of inference techniques, especially when considering
strategies to enable more efficient inference through model-specific structure. For this reason,
this section begins with an overview of probabilistic programming and then gives an overview of
the particle filter, an inference method that is widely used for the types of latent temporal modules
discussed in Section 3.2.3.
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3.3.1. Probabilistic programming. Probabilistic programs are the stochastic analogs of usual,
deterministic computer programs. Hence, they are naturally suited to Monte Carlo, and a num-
ber of packages have used this fact to support inference in freely specified generative models. In
probabilistic programming packages, both the deterministic and stochastic relationships between
parameters and data are represented computationally, and a generic inference algorithm is used
to approximate the distribution of all unobserved random nodes (parameters and latent variables),
conditionally on the observed ones (data).

For example, Stan, Pyro, and Anglican provide interfaces for specifying generative mecha-
nisms in this way (Wood et al. 2014,Carpenter et al. 2017,Bingham et al. 2019). In the background,
they parse the conditional dependence relationships to perform various forms of inference, like
MCMC (e.g., hybrid Monte Carlo, the no U-turn sampler, the Gibbs sampler), variational infer-
ence, importance sampling, and sequential Monte Carlo. The result of any of these inference
algorithms is a fitted generative model, which can be used to sample from the approximate
conditional distribution of unobserved nodes. Critically, solving a statistical problem using gener-
ative models no longer requires manual derivation of model-specific inference algorithms, which
historically made the generative approach inaccessible to all but technical specialists.

Though they do not require manual derivations, skillful use of these platforms requires prac-
tice. Hands-on introductions are provided by Clark (2022),McElreath (2020), Blau &MacKinlay
(2021), and Pyro Contributors (2022). Probabilistic programming languages represent distri-
butions as abstract objects, each with their own methods for evaluating distribution-specific
properties, like the log probability of a dataset. Though this additional layer of abstraction can
seem foreign at first, it allows models to be constructed by manipulating distributions at a high
level. The benefits of learning to operate at this level are analogous to those gained by learning
languages that free the programmer from managing low-level memory—more attention can be
invested in the design and experimentation rather than the implementation phase.

Here we give details on an example that illustrates the algorithmic machinery that operates in
the background of these inference packages.

3.3.2. Particle filter. Particle filters are a widely used collection of stochastic models, and since
they bridge different generative schools, we pause to give a somewhat detailed discussion. We
focus on the latent Markov model of Figure 4d. Having observed a sequence x1:T, we aim to
characterize the unobserved process in states z1:T giving rise to the observed data.

For example, we may have observed a sequence of economic indices over time. We imagine
that the indices x1:T can be succinctly described by latent states z1:T, and we are especially curious
about when this latent state undergoes rapid transitions. For example, these periods of transition
could be interpreted as periods of rapid expansions of specific industries or deteriorations in overall
economic equality (Kim & Nelson 2017).

To this end, we need access to p(zt|x1:t), but in general settings, there is no analytical solution.
In this case, it is natural to consider a Monte Carlo approach. If we can sample zt|x1:t through
some mechanism, then the resulting empirical distribution should approximate p(zt|x1:t) when
the number of samples is large enough. These samples are called particles, and they play a role
analogous to agents in an ABM.

The idea of importance sampling is to use a proposal π (z1:t|x1:t) to come up with candidate
samples zb1:t from p(z1:t|x1:t). For example, a common proposal is to sample according to the latent
dynamics π (z1:t |x1:t ) := 5t

t ′=1p (zt ′ |zt ′−1 ). Even though it is not possible to sample from the density
p(z1:t|x1:t), we assume that it is possible to evaluate it for any given zb1:t . This makes it possible to
upweight candidates with high probability under the true density. Specifically, by using weights
w
(
zb1:t
) ∝ p(z1:t |x1:t )

π (z1:t |x1:t ) , the weighted average
∑B

b=1 f
(
zb1:t
)
w
(
zb1:t
)
estimates Ep(z1:t |x1:t )[ f (z1:t )].
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While it is convenient to sample entire trajectories zb1:t using a single set of weights, this ap-
proach deteriorates for large t. Only a small pocket of trajectories z1:t in the t-dimensional space
will have large enough probability, leading to skewed weights. Moreover, since our goal was only
to sample zt|x1:t, there is no need to sample entire trajectories; the marginals at each timepoint
are enough. This suggests an alternative to importance sampling, called the particle filter (Doucet
et al. 2001, Crisan & Doucet 2002, Andrieu et al. 2004). First, note the recursive relationship
between p(z1:t|x1:t) across t,

p (z1:t |x1:t ) ∝ p
(
xt |x1:(t−1), z1:t

)
p
(
z1:t |x1:(t−1)

)
= p (xt |zt ) p (zt |zt−1 ) p

(
z1:(t−1)|x1:(t−1)

)
.

The first term in the final expression is the likelihood of the current observation given the current
latent state, the second reflects the transition dynamics, and the third is the previous iteration of
the quantity of interest.

If we use a proposal that satisfies π (z1:t |x1:t ) = π̃ (zt |z1:(t−1), x1:t )π (z1:(t−1)|x1:(t−1) ), then we also
obtain a recursion for the weights,

w
(
zb1:t
) = p

(
xt |zbt

)
p
(
zbt |zbt−1

)
π̃
(
zbt |zb1:(t−1), x1:t

) w
(
zb1:(t−1)

)
.

The particle filter uses these intermediate weights to focus in on promising regions of the
trajectory space. Specifically, suppose we have a sample of B plausible trajectories zb1:(t−1) up to
time t − 1. Using π̃

(
zt |z1:(t−1), x1:t

)
, propose one-step extensions zb,∗1:t . Rather than directly using

weights w
(
zb,∗1:t
)
in an importance sampling step, we use these weights to draw

(n1, . . . , nB ) = Mult
(
B,
(
w
(
z1,∗1:t

)
, . . . ,w

(
zB,∗1:t

)))
.

Trajectories zb,∗1:t with low weight may have nb = 0. In contrast, those with high weight might have
large nb. To construct an extended set of trajectories

(
zb1:t
)B
b=1, we simply make nb copies of each z∗,b

1:t .
It turns out that this is exactly a draw from p(zt|x1:t)—no additional reweighting step is necessary,
as it is already accounted for in the multinomial sampling.

A useful interpretation is to consider the (t − 1)st coordinate of the partial trajectory zb1:(t−1)

as one of B particles living in a latent space. Our extension to zb,∗1:t propagates these particles to
the next time step; the particles also get larger or smaller depending on the weights w(zb,∗1:t ). In
the multinomial sampling step, small particles are eliminated. Large particles are split into sev-
eral at the same location. The paths that these reproducing particles trace out over time define
a collection of plausible trajectories in the latent space. In this way, the incremental evolution of
a collection of discrete particles supports analysis of an otherwise intractable analytical problem.
Returning to the economics example, the particle filtering view is to understand the latent dy-
namics of the economy by simulating many alternative histories, ensuring that at each step, the
simulated history is not too inconsistent with the observed data.

4. GOODNESS OF FIT

The difference between successful and failed modeling efforts is rarely the initial analysis. These
first attempts are typically disappointing—progress is made by recognizing and addressing limi-
tations. Ideally, this refinement can be guided by formal, automatic processes. Indeed, automation
is in some ways responsible for the success of classical goodness-of-fit testing—it made these
methods broadly accessible, and even for statistical experts, formal goodness-of-fit evaluation
helps in navigating ambiguous settings and enhances reproducibility (Kempthorne 1967). Classi-
cal goodness-of-fit tests have a relatively narrow scope, but many of the core ideas can be extended
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to the general generative framework. The modular structure of the generative approach makes
them naturally amenable to iterative improvement. This section describes progress in generative
models that helps bring some of the precision and routine of classical goodness-of-fit testing to
more complex, generative settings.

In this context, it is important to develop quantitative and visual techniques for measuring the
discrepancy between real and model-simulated data (Friedman 2001, Kale et al. 2019). Informally,
we can compute reference distributions for any number of test statistics and mechanisms. For
example, in the single-cell genomics community, packages are available that apply a battery of
metrics, like gene-level dispersion and sparsity, to gauge simulator faithfulness (Cao et al. 2021,
Crowell et al. 2021).

A key observation is that, rather than specifying the discrepancy measure in advance, a dis-
criminator can itself be learned from the data. This is the approach of Friedman (2004), who uses
ensemble models to distinguish real and simulated data. To calibrate the typical effectiveness of
the discriminator, it can be useful to contrast pairs of sample from the same generative mechanism;
this serves as the analog of the reference distribution in classical testing. An ineffective discrimi-
nator is used as evidence of goodness of fit—if the real data cannot be distinguished from samples
from a given generative mechanism, that mechanism must approximate reality well. Moreover, if
a discriminator is able to distinguish between real and simulated data, then the regions for which
it is most accurate can be used to guide refinements to the generative mechanism.

4.1. Example: Mixture Modeling

Wenext provide an example of iterativemodel building using a discriminator.Though the example
dataset is small, it contains enough complexity to underscore the value of quantitative goodness-
of-fit evaluation. Imagine we have been presented with the data from Figure 5. Noting the clear
mixture structure and fairly elliptical shape in each component, we decide to fit a Gaussianmixture
model with K = 4 components. We place a Gaussian prior on the means and assume a diagonal
covariance with equal variance across both dimensions and shared for all components.

Figure 5

The mixture dataset of interest in Section 4.1, with a clear mixture structure and fairly elliptical shape in
each component.

www.annualreviews.org • Generative Models 339

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

23
.1

0:
32

5-
35

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
 o

n 
06

/1
2/

23
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



ST10CH14_Holmes ARjats.cls February 14, 2023 12:10

Figure 6

Discrimination probability across a sequence of models, arranged from left to right. The true dataset is given in the top row, and
simulated posterior predictive samples from each model appear in the bottom row. Points are colored in by their predicted probability
of belonging to the true or simulated dataset, derived from a gradient boosting machine discriminator. As the simulated data appear to
more effectively capture structure in the observed data, the discriminator struggles to identify any difference.

To evaluate goodness of fit, we fit a gradient boosting machine (GBM) discriminator to distin-
guish between true and simulated data (Friedman 2001, 2004). The GBM is a flexible, tree-based
method that can learn nonlinear boundaries between classes. Evaluating classifier accuracy with
the same data used during training would not allow us to detect overfitting, so we use 10-fold
repeated cross validation. This randomly assigns each of the real and simulated samples to one of
ten folds. Then, ten models are trained, each one holding out one fold, which is used to evalu-
ate accuracy. The full process is repeated ten times, and all the fold-level holdout accuracies are
averaged. Through this process, we find that the model achieves an average of 65.5% holdout
accuracy, indicating substantial room for improvement. To understand the source of this ability
to discriminate between true data and simulated samples, the far left panels of Figure 6 visualize
each simulated and real sample with its predicted class probability overlaid. An overrepresented
region near the top left is visible—this is the bright blue region in the large cluster in the bottom
left panel. Since these points are blue, the GBM has learned that samples in this region are almost
always simulated, not real. It seems that two clusters have been merged. Furthermore, we observe
that the density of points in the center of the bottom right cluster is higher in the real relative to
the simulated data. Indeed, the predicted probability of the true data class within the core of this
component is noticeably higher than the corresponding probability for simulated data.

To address these issues, we implement two changes to the model:

■ Since our model seems to be incorrectly merging clusters, we increase K to 5.
■ One explanation of the overrepresented core in the bottom right cluster is that the real

data have smaller variance in that cluster. Hence, we allow each mixture component and
dimension to have its own variance, though the covariance is still diagonal.
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We again fit a GBM to distinguish simulated and real data. For this model, the average holdout
accuracy is now 55.5%.The corresponding predicted probabilities are shown in the middle panels
ofFigure 6.The performance of the discriminator has deteriorated, indicating an improvedmodel
fit. Furthermore, the failure to cover all true data has been alleviated. However, the core of one of
the mixture components continues to be overrepresented, now in the bottom left cluster.

We next realize that an alternative explanation for the underrepresented cores may be the
presence of outliers. Indeed, an outlier has the potential to inflate the estimated variance within a
cluster, leading to a larger spread for the simulated data. Therefore, we consider fitting a mixture
of t-distributions instead. As in the previous iteration, we use K = 5 clusters and diagonal (but
not necessarily equal) covariances. A GBM discriminator applied to the results of this model now
only achieves a holdout accuracy of 50.5%. Discriminator-predicted probabilities in the far right
panels of Figure 6 suggest that the problem of overrepresenting the core of certain mixtures
has disappeared. The only potential issue is the presence of some regions close to outliers where
the simulator generates unnecessary samples. Overall, the fit is noticeably improved relative to
either of the two previous attempts, and this is reflected in the discriminator’s essentially random
guesses.

4.2. Discrepancy Measures

By this point, it should be no surprise that the true data are a mixture of 5 Student’s-t distribu-
tions with unequal but diagonal covariance matrices. Nonetheless, this toy setup captures many
features of real data analysis (Blei et al. 2010, Gabry et al. 2019). Rather than proposing an overly
complicated initial fit, it is natural to begin with a textbook model, but there are bound to be
mistakes along the way (e.g., misspecifying the number of clusters above). Since generative mod-
els support simulation, it is possible to train a discriminator to home in on regions of inadequate
model fit. Here, we followed the discriminator training of Friedman (2004), applying a nonlinear,
tree-based model to transform a goodness-of-fit problem into a matter of classification. Specif-
ically, the accuracy of a classifier provides a measure of discrepancy between true and simulated
samples. Low classification accuracy suggests that the generative model is capable of mimicking
even subtle patterns in the real data. The advantage of this overall perspective is that now any
prediction algorithm can be turned into a measure of distributional discrepancy. Based on the
guidance from a discrepancy measure, the modeler can introduce necessary complexity, adapting
dependence structures and distributions until a satisfactory fit is found.

Goodness-of-fit evaluation is traditionally viewed as a hypothesis testing problem, but the
example above highlights the close relationship between testing and classification. Indeed, this
connection has sparked renewed interest in evaluation for more complex generative modeling
settings.We note in particular the Stein discrepancy approach (Gretton et al. 2012, Gorham et al.
2019). Given a target P, whose distribution we imagine the data may belong to, it is often pos-
sible to construct a Stein operator T and test function class G such that, whenever xi ∼ P, the
sample averages 1

n

∑n
i=1 T g (xi ) ≈ 0 for any g ∈ G. The collection of functions {T g : g ∈ G} can be

viewed as a collection of test functions, and whenever the observed values of these test functions
are far from 0, we have an indication that the true distribution of xi is not P. Formally, the Stein
discrepancy is defined as the maximum expected value over all test functions, supg∈G ∥E [T g (X )

] ∥.
The value of this approach is that operators T and classes G can be constructed even for dis-

tributions whose normalizing constants are intractable. This makes them especially attractive for
evaluation in the context of generative models. They make it possible to leverage the known un-
normalized component of the density and avoid generic goodness-of-fit tests, which often have
low power since they must be valid across wider classes of densities.
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5. SIMULATION AND EMULATION

Simulations are a general problem-solving device: A good simulator encodes beliefs about a sys-
tem and enables decision-makers to query a wide variety of states and perturbations, even those
that were never observed. They are especially useful in complex systems where dynamic spatio-
temporal data make analytical calculations intractable. Decision-making can follow the system
from the individual agents up to the emergence of macroproperties, which then can be evaluated
using sensitivity and stability indices. Conclusions can be drawn by observing the evolution of
units across repeated trajectories within and across parameter settings.

For example, a variety of simulators were used to compare the potential effects of alternative
nonpharmaceutical interventions in the COVID-19 pandemic (Ferguson et al. 2020, Hinch et al.
2021, Kerr et al. 2021). Guided by expert knowledge, these simulations allowed a critical evalua-
tion of alternative paths through the pandemic. For example, university presidents could ask the
simulator how switching to remote classes for variable numbers of weeks would influence the total
number of cases over the semester or how changing the number of students in each dorm might
influence the total number of COVID-19 clusters.

These simulations can be guided by local, agent-level rules, as in ABMs. When modeling the
spread of a contagion, the modeler decides on the structure of agent-level interactions and the
probability of disease spread given an interaction. Since these mechanisms are defined by pro-
grams, not explicit mathematical densities, it is not possible to explicitly evaluate the probability
of a simulated dataset. In the absence of formulas, we might be resigned to informal deductions
based on tinkering with parameters in the simulation mechanism.

However, a flurry of recent activity, surveyed below, demonstrates that this informal decision-
making can be formalized into statistically-guaranteed inference. Simulation and inference are
closely linked—whenever it is possible to simulate data, it is possible to use an observed dataset
to infer plausible simulation parameters. This is true even when the simulation mechanism is
described by local, agent-level rules. It is possible to map local rules to global properties of the
simulated systems, and if variations in local rules are reflected in global properties, then reversing
the mapping supports inference. These methods support statistical inference in situations like
contagion modeling, where the mathematical form of the overall probabilistic mechanism may
be difficult to express, but where it is natural to define local computational rules that govern the
system.

5.1. Approaches

A simulation is governed by global parameters θ , is initialized in a state x0, and evolves across
iterations t. The state of the system refers to all of its variables at a given time. The current state
xt, the historical trajectory of the system (xs )t−1

s=0 , and random noise can all govern the evolution
of xt into xt+1. We assume the simulation is stopped after T steps and write the full trajectory of
states as x := x1:T .

Many problems reduce to completing the following tasks:

■ Hypothetical outcomes: For a given parameter θ , summarize the distribution of some statis-
tic S (x) across simulations evolving according to θ . This can be approximated by running
an ensemble of simulations xb for b = 1, . . . , B and computing the summary S across the
ensemble.

■ Parameter inference: Given a series of observed states x, determine a distribution of plausible
parameters θ of the simulator.

The methods below have been developed to address these questions.
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5.1.1. Approximate Bayesian computation. Approximate Bayesian computation (ABC) was
one of the earliest approaches to likelihood-free inference, and it remains widely used in practice
(Tavaré et al. 1997, Pritchard et al. 1999, Sisson et al. 2018, Beaumont 2019). It is used to an-
swer parameter inference questions. Let F (x|θ ) denote the (inaccessible) probability density over
trajectories x for simulators parameterized by θ , and define a proposal π (θ ) over the simulator’s
parameter space 2. Generate an ensemble of simulated datasets, where parameters are themselves
drawn from the proposal

xb|θb ∼ F (x|θb), b = 1, . . . ,B,

θb ∼ π (θ ).

To compare a pair of datasets, compute a distance between sufficient statistics, d(S(x),S(x′ )).
Datasets with the same sufficient statistics are considered equivalent. Given a real dataset x, ABC
induces a posterior on θ by building a histogram from all those θ b where d(S(xb),S(x)) < ϵ. The
parameter ϵ governs the quality of the approximation—small ϵ leads to more faithful approxi-
mations but results in most forward simulations being omitted from the posterior histogram’s
construction.

Though simple to implement and applicable across a variety of settings, ABC can be greedy,
requiring many forward simulations B before arriving at useful posterior approximations. More-
over, estimates are sensitive to the choice of S and ϵ (Prangle 2018). For this reason, we turn next
to alternatives that make stronger assumptions on the relationship between 2 and x but that are
more sample efficient.

5.1.2. Gaussian process surrogates. For computationally intensive simulations, it can be pro-
hibitive to generate more than just a few runs. To explore a wide range of configurations θ in an
efficient way, it is often possible to estimate a surrogate model ỹ (θ ) of the relationship y(θ ) be-
tween θ and summaries S (x) of interest. This new surrogate supports more rapid exploration of
hypothetical outcomes compared with running the entire simulation for each choice θ . The main
assumption is that y is smooth—i.e., simulations using similar values of global parameters θ are
expected to have similar summary statistics. Surrogate models are often estimated using either
normalizing flow (Brehmer et al. 2020) or GP (Gramacy 2020, Baker et al. 2022) models. Both
approaches have the advantage that they emulate the likelihood F (x|θ ), supporting more direct
inference over θ than ABC (Cranmer et al. 2020, Dalmasso et al. 2021).

We detail the GP approach to simulation surrogates. This approach has been successfully
applied to Ebola contagion modeling, fish capture-recapture population estimation, and ocean
circulation models—Baker et al. (2022) provides a comprehensive review. Suppose we have com-
puted B simulation runs xb for parameters θ b. To ease notation, write yb = S

(
xb
)
. For the moment,

suppose that yb ∈ R is one-dimensional and that we aim to approximate y∗ := S (x∗ ) at a new
configuration θ∗. A GP surrogate assumes a prior (y1, . . . , yb, y∗ ) ∼ N (0,C (θ )), where C(θ ) is a
covariance matrix depending on the simulation parameters via a prespecified covariance function.
For example, the [C (θ )]bb′ could be C (θb, θb′ ) = γ exp

(−κ∥θb − θb′∥2
)
for hyperparameters γ , κ .

To emulate the simulator at a new parameter θ∗, we compute the posterior y∗| (yb)Bb=1, which is
available in closed form by the rules of Gaussian conditioning. In particular, the mean and variance
of S (x∗ ) can be immediately derived.

In the case of multidimensional yb, several options are available. First, we may model each
coordinate of the summary with a separate GP. Alternatively, we may swap dimensions between
the output and input space. For concreteness, suppose that

(
yb1, . . . , y

b
T

)
is a T-dimensional sum-

mary of the temporal evolution of the simulation at configuration θ b. We can define a covariance
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function C((θ , t), (θ ′, t′)) that correlates simulation outputs with similar parameters θ and time-
points t. This new covariance can be used in a GPmodel as before, and the conditional probability
y∗1, . . . , y

∗
T | (ybt )T ,B

t,b=1 can be found for any new sequence of outputs
(
y∗1, . . . , y

∗
T

)
.

5.2. Examples

To clarify the situations in which these methods may be practically useful, we present examples
that, though mathematically intractable, are readily amenable to simulation-based inference.

5.2.1. Batesian mimicry. We next illustrate the use of simulation-based inference in a simple
ABM from evolutionary genetics. The ABM provides an environment for reasoning about Bate-
sianmimicry, a phenomenonwhere species evolve similar appearances under selection pressures.A
classical example is the resemblance between viceroy and monarch butterflies. Birds are known to
avoid monarch butterflies, whose diet includes plants toxic to birds. Viceroys are edible, but when
they happen to have similar appearance to monarchs (black and red wings), birds avoid them.

This story can be captured by an ABM,one that is implemented in the NetLogo package’s built-
in library (Tisue &Wilensky 2004).This ABM has three types of agents—monarchs, viceroys, and
birds. Monarch and viceroy butterflies have a categorical “color” attribute with 20 possible levels.
This represents how they appear to birds. Birds have a vector-valued “memory” attribute, stor-
ing colors of up to three of the most recently eaten monarchs. All agents have an (x, y) location
attribute. At each time step, nearby birds and butterflies interact. If the butterfly’s color is con-
tained within the bird’s memory, the butterfly survives; otherwise, it is eaten. If the eaten butterfly
happened to be a monarch, then the monarch’s color is added to the bird’s memory vector. If the
vector is now longer than three, then the oldest color is removed from memory. Also at each time
step, butterflies replicate with a small probability. When they replicate, they either create an ex-
act replicate or they create a mutant with a color attribute drawn uniformly from one of the 20
options. The probability of creating a mutant is controlled by a global mutation rate.

The salient feature of this model is that the average colors for the two species eventually con-
verge to one another. In this way, local rules are able to capture the emergent phenomenon of Bate-
sian mimicry. The fact that viceroys survive longer when they have colors that overlap with mon-
archs creates a selection pressure that results in the species appearing indistinguishable, on average.

We next pose an inference question: Given an observed simulation trace, can we infer the mu-
tation rate? Figure 7 shows that higher mutation rates lead to more rapid convergence, providing
a basis for inference. We approach the problem using a variant of ABC based on the particle fil-
ter called sequential Monte Carlo–approximate Bayesian computation (SMC-ABC) (Del Moral
et al. 2012, Jabot et al. 2013), a blend of the algorithms discussed in Sections 3.3.2 and 5.1.1.
This requires specification of a prior on mutation rates and a summary statistic to use for the ba-
sis of similarity comparisons. We choose a uniform prior over mutation rates from 0 to 1. Our
summary statistic is defined as S(x) = ((x̄viceroy − x̄monarch )1: T4 , . . . , (x̄

viceroy − x̄monarch ) 3
4T :T ), giving

the difference in average color for viceroy and monarch butterflies over four equally spaced time
intervals.

Our real data summary statistic is found by simulating one run with a mutation rate of 90.
We run each simulation for T = 175 time steps and use a summary statistic tolerance of ϵ = 5.
We continue simulating until 250 samples are accepted. The SMC-ABC posterior is shown in
Figure 8. Our inference has clearly ruled out any mutation rates below 40, and though the pos-
terior mode is near the true value, there remains high uncertainty. This is consistent with the
difficulty in differentiating large mutation rates visually in Figure 7. We note that this posterior
is still approximate, and lowering the tolerance and increasing the number of required posterior
samples would lead to a more precise estimate, albeit at the cost of increased computation.
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Figure 7

Example trajectories of butterfly color in the Batesian mimicry agent based model. Colors encode butterfly species. Solid lines and
envelopes give the average color across all butterflies from that species over time, plus or minus one standard deviation. Panel titles give
global mutation rate and are sorted by slowest to fastest evolution.

5.2.2. COVID-19 nonpharmaceutical interventions. Our next example describes how GP
surrogates can support efficient decision-making when working with a computationally intensive
COVID-19 simulator. The simulator we use, Covasim, is an ABM originally developed to support
reasoning about hypothetical outcomes of various nonpharmaceutical interventions to COVID-
19, including workplace and school closures, social distancing, testing, and contact tracing (Kerr
et al. 2021).Each agent represents an individual, and their state reflects the potential progression of
disease, from asymptomatic-infectious to various degrees of disease severity, and finally to recovery

Figure 8

The posterior probability of mutation rates in a run of the Batesian mimicry agent based model when using a
true rate of 90. By using sequential Monte Carlo with approximate Bayesian computation, posterior
probabilities can be derived without access to a true likelihood. Particles and weights from sequential Monte
Carlo have been smoothed to form a posterior density.
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or death.At each time step, agents interact across a predefined set of networks, representing family,
school, workplace, or random contact networks, and during these interactions, the disease can
spread.

Alternative interventions inhibit these interactions in different ways—we focus here on testing
and contact tracing interventions. These are parameterized by ptest, ntest, and ptrace. The fraction
of symptomatic individuals who receive a COVID-19 test is modulated by ptest. If their test comes
back positive, the agents enter a self-imposed quarantine, during which they do not transmit the
disease.The intensiveness of the contact tracing effort is controlled by two parameters, the number
of days ntest needed before contact tracing notifications are made and the probability ptrace that a
contact of a positively-tested agent is correctly traced.

Before evaluating the effects of alternative interventions, we first calibrate the simulator to a
dataset of daily infections, tests, and deaths, representing the initial phase of an outbreak on a
population of size 100,000. This calibration step runs trials with varying link infection and death
probability, choosing a combination that best fits the observed initial outbreak. Given these back-
ground parameters, we use the simulator to evaluate hypothetical effects of different ptest and
ptrace—these effects can be used to set targets for testing and contact tracing. Since evaluating the
simulator along a fine grid of these parameters is costly, we train a GP surrogate to a coarser set
of simulations, shown in Figure 9. This initial set of runs already gives the general outlines of
intervention effects, and a surrogate model makes it possible to represent the analogous trajec-
tory for any (ptest, ptrace) combination of interest. For example, Figure 10 provides 250 trajectories

Figure 9

Hypothetical outbreak trajectories from the Covasim agent based model when varying three simulation parameters. Column labels give
the probability that a symptomatic agent is given a test. A positive result triggers a quarantine for that agent and contact tracing for its
recent contacts. Rows correspond to the probability that a contact of a positively tested agent is traced down and isolates. The number
of days required for contact tracing to trigger isolation is indicated by color.
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Figure 10

Hypothetical outbreak trajectories under differential testing and contact tracing capabilities, derived using a Gaussian process emulator
of the Covasim agent based model (see Figure 9). Panels give the probability that an agent that interacted with an agent in an
infectious state is both traced down and placed into quarantine. Colors indicate the probability that a symptomatic agent is given a test.
The qualitative influences of these parameters mirror those in the full simulation but are derived with less computation.

across a range of ptest and ptrace—this takes 2.65 minutes on a laptop with a 3.1 GHz Intel Core i5
processor and 8GB memory. In contrast, computing just one trajectory from the Covasim ABM
takes 6.20 seconds, and the estimated time for all 250 is 25.8 minutes.

6. CONCLUSION

Generative models have emerged as key instruments for inferential and hypothetical reasoning.
As models, they distill data into meaningful theories, and as simulators, they support inquiry into
alternative courses of action. Throughout this review, we have seen that the data they produce
can guide the myriad decisions needed for effective design and modeling, from establishing the
experimental setup of a genomics study to weighing potential responses to a pandemic.Calibration
against observed data grounds reasoning in a concrete setting, while direct control of parameters
supports imagination of alternatives.

The practical utility of these approaches has led to their widespread adoption across many
communities. This review has drawn examples from physics, economics, epidemiology, behav-
ioral ecology, biostatistics, and computer science. Even disciplines far removed from real-world
sensors have found value in simulated data; for example, Mazur (2008) uses generative models
to develop and refine mathematical conjectures in number theory. We have noted the difficulties
in leveraging methods developed across several fields, but these are often due more to cultural
habits and language rather than any fundamental differences in problem-solving strategy. Indeed,
many of the methods reviewed here are drawn from the broader program of strengthening the
ties between communities—discovering ways in which computational simulators can support sta-
tistical experimental design, and drawing from concepts in statistical inference to support analysis
of ABMs, for example. Generative models are rapidly becoming the lingua franca of science.

Some of the most interesting advances in generative models domore than bridge communities;
they enrich our language for reasoning about chance. In particular, we have seen a contin-
uum emerging between granular agent-particle models and those based on smooth probabilistic
densities. In complex simulations, smooth emulations provide a path to tractability. Discrete
ABMs can represent complex interactions and heterogeneity, but a smooth surrogate can sim-
plify direct manipulation and queries. In the other direction, when closed-form recursions for
posterior distributions in latent Markov models proved impossible to obtain, a shift toward the
particle perspective proved critical for effective inference. There is a spectrum between smooth
and discrete representations for stochastic systems, and transitioning across it can be a powerful
problem-solving device.
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It is increasingly the case that generative models are used to support introspection and dis-
covery. Simulation mechanisms make it possible to compare and analyze scientific workflows and
data analysis strategies. Recent statistical work has provided strong evidence for specific high-
dimensional phenomena based on simulation alone (Bertsimas et al. 2016, 2020, Chen et al. 2020,
Hastie et al. 2020). Within statistics, distinctions between theoretical and empirical analysis have
long been blurred, with both theorems and simulations used to clarify key issues across the disci-
pline. A generative perspective helps these complementary approaches cohere—experiments need
conceptual mechanisms, and theory needs observed structure.

Research can hold toomany surprises for broad-brush forecasts to be taken too seriously.How-
ever, it is oftenworthwhile to pay careful attention to recent developments,with an eye toward how
scientific practice has evolved. In this spirit, consider the statistical activity sparked by our societal
need to respond to the COVID-19 pandemic.During the early phases of the pandemic, and indeed
with each unexpected development, actions could not be informed by data alone, and decision-
making had to be guided by simulation before data could complement the process. Against this
backdrop, rapid progress was made in bridging inference with simulation, facilitating both criti-
cal evaluation of uncertainties and imagination of hypothetical outcomes. Researchers found that
successful problem solving during a crisis requires communication across disciplinary boundaries,
with reproducible, transparent models playing a central role. Responses to future crises, in partic-
ular those driven by climate and ecological change, will likely require an even greater degree of
coordination and model-guided decision-making, and we expect them to be similarly dependent
on progress in generative modeling.

The broadened scope of problems that have been considered by generative models poses a
challenge on several levels. On a nontechnical level, even when two communities use generative
models, it is easy for ideas to be lost in translation. For example, what in statistics might be called
nonidentifiability has come to be called sloppiness by those using simulations in ecology and bi-
ology. Similarly, nonlinearity in statistics usually refers to the form of a regression function, while
in simulation, nonlinearity is used in the sense of the system being governed by a nonlinear partial
differential equation. Care needs to be taken to work on teams with diverse intellectual back-
grounds, and to hear out each of the technical ideas without falling into the traps of language or
arguments over the ownership of those ideas.

On a technical level, there remains a challenge in structuring the process of model refine-
ment. Models give a form of approximation, and two questions are at the back of every modeler’s
mind: (a) Is the approximation sufficient, and (b) if not, how can it be improved? In ABMs, for
example, there are always additional attributes that could be given to each agent. These would
make the simulation more realistic, breaking the partial exchangeability implicitly encoded when
using only a more limited attribute set. Similarly, for variational methods, we often deliberately
ignore conditional dependence relationships for the sake of computational tractability. Computa-
tional constraints and our uncertainties about a system often force us to approximate, sometimes
dramatically so, and the question becomes, does it matter?

When working with generative models, we can gauge the approximation through simulation.
The data themselves are imbued with enough variability that if our model generates data that
blend in perfectly, then the approximation is good enough. This approach hinges critically on
access to effective discrepancy measures. Moreover, when discrepancies are found, they should be
transparent enough to guide model improvement. We see potential for recent theoretical work
with Stein’s method (Gorham et al. 2019) and optimal transport (Solomon et al. 2015) to translate
into tools for model criticism and refinement, but at the moment, the practice of generative model
building remains more of an art. The flexibility and transparency of generative models that make
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them so relevant to modern, collaborative science are also sources of worthwhile challenges for
the statistical community.
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