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Abstract

Although artificial intelligence (AI; inclusive of machine learning) is gaining

traction supporting climate change projections and impacts, limited work

has used AI to address climate change adaptation. We identify this gap and

highlight the value of AI especially in supporting complex adaptation

choices and implementation. We illustrate how AI can effectively leverage

precise, real-time information in data-scarce settings. We focus on super-

vised learning, transfer learning, reinforcement learning, and multimodal

learning to illustrate how innovative AI methods can enable better-informed

choices, tailor adaptation measures to heterogenous groups and generate

effective synergies and trade-offs.
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1 | INTRODUCTION

Climate change adaptation is complex, as most solutions require balancing synergies and trade-offs that stem
from interdependencies among social–ecological systems and sectors involved in adaptation. Adaptation as the
process of adjustment to actual or expected climate change is typically local or sector specific (Field et al., 2014),
and can overlook transmission of climate risks across sectors and regions (Challinor et al., 2018). Heterogeneous
actors also adapt differently, and have varying capabilities and choices for adaptation measures. Furthermore,
unprecedented climatic events and the time lag of climate change impact generate unknown consequences that
are difficult to adapt to. The result is a complex, uncertain, and rapidly shifting matrix of adaptation challenges
(Helmrich & Chester, 2020) which traditional climate change adaptation tools and strategies are not prepared to
address. With increasing availability of new data streams and analytic capabilities, new opportunities emerge for
artificial intelligence (AI) to help tackle these adaptation challenges. Though AI has been deployed in climate
change science, this has largely been confined to climate change modeling, impact, and mitigation (Huntingford
et al., 2019; Jones, 2017; Monteleoni et al., 2013; Rolnick et al., 2022) with less attention to adaptation. The
value of AI increases for adaptation especially when it facilitates the analysis of aforementioned complexities
such as synergies and trade-offs, heterogeneous actors, and unknown consequences of climate change impact.
Furthermore, AI is advancing rapidly to handle the data-scarce problems that are pervasive in adaptation
research. This article highlights these roles with key applications relevant to adaptation.
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2 | OFF-THE-SHELF AND INNOVATIVE AI TECHNIQUES
FOR ADAPTATION

AI is a set of techniques that simulate human cognition and reasoning using machines supported by higher computa-
tional power and large scale data sources. Machine learning, a subset of AI, is particularly good at detecting patterns
and extrapolating information to predict future trends and support decision-making. Standard AI applications require
data where major input features are clearly specified in advance and manually curated by domain experts to accelerate
data processing and improve human performance on complex tasks. They can automatically prepare semantically
meaningful labels and identify novel patterns from raw data. This efficiency of data processing is valuable given the
urgent timelines for climate change adaptation (Orlove et al., 2020). It may be the difference between evaluating an
adaptation question in 1 month versus 1 year by accelerating data annotations and applying supervised learning.

Off-the-shelf, standard AI methods and techniques, however, may not be suitable in instances where the data
required are rare or take too long to materialize; or they require costly expert labeling to transform raw measurements
into meaningful data. For example, online sellers often build AI models on surrogate outcomes such as customer page
views or clicks, instead of purchases; while purchases may be the final outcome of interest, they are often rare and take
longer to observe, making the data sparse. Similarly, climate change impact (the final outcome of interest) takes time to
materialize, whereas the impact assessment needs to be done in advance to protect the population from potential harm.
These data scarcity challenges worsen in poorer regions where data collection and analysis are difficult.

AI techniques increasingly demonstrate ways to solve limited data problems. Transfer learning leverage existing
data to transfer knowledge or learned representations to other similar settings; semi-supervised learning extends par-
tially annotated data to the entire dataset; and multimodal learning triangulates different data sources to delineate mul-
tidimensional adaptation processes. We explain briefly how these techniques are used in relevant domains, and list
them with examples from related fields such as sustainability and health in Table 1.

TABLE 1 Relevant AI techniques

AI technique Adaptation-relevant examples Description

Supervised learning Wildlife surveys for ecosystem change,
infrastructure monitoring, predictive
maintenance

Supervised learning can help provide meaningful annotation to
raw data streams. It can turn camera trap images into species
population estimates, and elevation maps with weather
forecasts into flood risks.

Transfer learning Urban planning, early warnings for floods,
crop yield monitoring

Transfer learning repurposes existing models to new contexts,
often by reusing parameter estimates across tasks. This
supports annotation of raw data when prior labels are scarce.
For example, it can be used to tailor a model from one urban
center to another.

Reinforcement
learning and
multiarmed
bandits

Relocation Reinforcement learning and multi-armed bandits estimate the
long-run values of possible actions to learn optimal policies in
heterogeneous, evolving environments. For example, they can
be used to identify personalized incentives for relocation.

Semi-supervised
Learning

Crop yield monitoring Semi-supervised learning leverages unlabeled data to
supplement training on small, labeled datasets. Deep network
classification or Gaussian process regression come with semi-
supervised variants.

Multimodal learning Multifaceted impact of extreme heat,
drought and food supply, resilient
infrastructure planning

Multimodal techniques make it possible to integrate information
across multiple modalities, like images and text. For example,
they can help combine social media feeds with environmental
sensor data in disaster management.

Multiobjective
techniques

Agricultural and water management,
response to heat island effects

Multiobjective methods optimize several competing objectives
simultaneously, either through introduction of constraints or
by reweighting goals. They ensure that model-guided
improvements in one aspect of a system do not result in
unintended losses elsewhere.
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Much of the initial model development for transfer learning is likely to take place in regions where extensive data
are already available—for example, Google's flood risk system (Nevo et al., 2020) was trained on data from the
Brahamputra basin, and Deines et al.'s (2021) model crop yield was trained on data from the U.S. Corn Belt. Once these
base models are developed, they can be transferred across contexts. While models must be trained in data-rich loca-
tions, they can be applied anywhere as long as the requisite features (based on street or satellite imagery) are available.
Transfer learning is especially useful in contexts with limited institutional record-keeping (e.g., no relevant government
records) and helps generalize context-specific adaptation planning. Challenges of applying models to new yet related
settings include differences in structures across data types and content (He et al., 2021). Ways to transfer trained models
to new domains are still being actively developed (Koh et al., 2021; Yang et al., 2021). More sophisticated techniques
use reinforcement learning and multiarmed bandits (Lai & Robbins, 1985) to dynamically allocate limited resources by
exploiting validated options as well as exploring new ones efficiently. This allows the system to navigate the
exploration–exploitation trade-off, gravitating toward treatments that past measurements suggest are optimal while
continuing to explore treatments for which little data are available.

Semi-supervised learning is useful when a large volume of historical data is available, and only a subset is annotated.
While it may be possible to train a supervised model using only the annotated subset, accuracy gains can be achieved
by leveraging the database of unannotated examples. It is widely used in satellite image analysis for ecosystem monitor-
ing, food security assessment, water management, and public health studies that are part of climate proofing and
mainstreaming. Multimodal learning merges varying data sources, and necessitates interfaces that require specifically
designed algorithms and transparent data processing in interoperable formats (Morency & Baltrušaitis, 2017). There are
important advantages to combining data sources in a climate adaptation context. First, this allows new data sources to
be integrated into existing systems. Second, multiple data sources can be complementary, as when social media
messages can be linked with geolocated events (Chowdhury et al., 2013).

3 | EXAMPLES

We have identified critical areas of adaptation to which AI techniques can add value, and highlight several examples
that reflect both the application of off-the-shelf/standard and innovative uses of AI for informing adaptation choices
and implementation. The examples focus on knowing more about what we are adapting to; customizing adaptation to
fit the specific needs of varying populations; and identifying synergies and trade-offs across sectors and localities.

3.1 | More information on the current status of adaptation

Providing more information in an accelerated manner is valuable to monitor climate change impact and protect people
from climate risk leading to informed decisions about adaptation choices. For example, ecosystem adaptation often
requires detailed, precise, and up-to-date information to monitor ecosystem health as climate changes. Climate change
impacts wildlife populations either directly (e.g., through weather-related ecosystem changes) or indirectly
(e.g., through climate-change-induced changes in human settlement patterns and agricultural land use). AI can distill
more information by expanding the rate at which data can be collected and processed from camera traps, aerial imag-
ery, and acoustic sensors routinely used to survey species populations (Simpson et al., 2014). Data from these sensors
can be transformed by AI into usable quantitative information with image classification, object detection, and instance
counting. With a labeled training set, the AI system can learn to annotate new records (Norouzzadeh et al., 2021), and
reduce the human labor and time in the identification of wildlife populations. The data generated by these systems can
also potentially provide more precise information as AI can allow the processing of data from more sensors in the same
amount of time, allowing higher-resolution surveys.

Evidence of adaptation choices can be also found in text, such as laws, project descriptions and policy documents
that natural language processing (NLP) can assist with. Topic modeling is often used to discover relevant themes with
or without supervision from extensive text-based datasets including speeches given at climate negotiations
(Lesnikowski et al., 2019) and automated classification of scientific abstracts and documents. They can generate evi-
dence maps using geoparsers, and determine the status of observed climate change impact and the implementation of
adaptation policies (Biesbroek et al., 2020; Callaghan et al., 2021).
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3.2 | Tailored adaptation measures

There is considerable heterogeneity in terms of the ability of individuals and societies to adapt because of demographic,
economic, institutional, and health factors that vary among individuals, households, communities, and nations. Adapta-
tion will be more effective if policies are tailored to these differences. Machine learning techniques can be particularly
well-suited to identify different effects of a policy on different groups. This enables decision-makers to customize poli-
cies to specific groups of individuals to maximize efficient and equitable allocation of resources rather than following a
one-size-fits-all approach. Techniques such as reinforcement learning and multimodal data are already being applied in
health and sustainability fields. For example, Greece maximized the efficiency of limited COVID-19 testing by targeting
tourist profiles that were most likely to test positive for the disease (Bastani et al., 2021); and an integration of geo-
located text data with satellite imagery estimated socioeconomic indicators and assessed the level of poverty in Sub-
Saharan Africa (Sheehan et al., 2019).

Such techniques can be applied to the problem of relocation, tailoring adaptation measures to different population
needs. Policymakers can provide different incentives to individuals to move to a safer location because of increasing cli-
matic events such as wildfires and flooding. Some individuals might respond to information about the risks, whereas
others might respond to monetary incentives. Because adaptation is relatively new, large-scale observational datasets
from different policies are not available to support a non-experimental approach. Traditional experimental design
would randomly offer different treatments to different individuals, collect outcomes data, and then fit a machine learn-
ing model to the results. Importantly, this model would identify heterogeneous treatment effects (see,
e.g., Chernozhukov et al., 2018), informing subsequent decisions about what treatment to offer to each individual. Rein-
forcement learning can significantly boost the efficiency of traditional experimental design by dynamically allocating
resources to the most promising treatment effects.

3.3 | Synergies and trade-offs

A significant absence of cross-sectoral or regional/global interactions in models of adaptation has been identified
(Harrison et al., 2016). This absence leads to the lack of information on the ways these interactions alter the long-term
impacts of climate change and the subsequent scope of adaptation (Holman et al., 2019). Knowledge on these interac-
tions is, therefore, important to understanding synergies and trade-offs of adaptation decisions and investments. Mathe-
matical programming and scalarization that readily utilize AI techniques, for example, can be applied to assess
multiple, often competing goals. Multiobjective techniques fit this role by ensuring that performance is balanced across
multiple groups. They go beyond traditional machine learning algorithms that focus on a single objective to typically
test accuracy. Instead they seek choices that lead to satisfactory results across all objectives, rejecting solutions that may
be optimal for one set of objectives and not for others.

In climate change adaptation, multiobjective techniques can be employed to model jointly water and food security
or predict heat island effects that design and promote equitable interventions. A system trained to optimize regional
crop yield alone may attempt to increase yield by increasing the amount of irrigation in a locality, potentially straining
community water resources. A multiobjective approach instead guides the search for solutions that benefit both food
and water security by ensuring that community water needs are not neglected. Similarly, in the absence of multi-
objective techniques, a system to predict heat island effects may achieve high overall accuracy in an urban setting with-
out guaranteeing accuracy of each neighborhood. This may lead to inequitable distribution of resources such as tree
planting or placement of cooling centers to mitigate the heat effect. A solution with lower overall accuracy, but with
more evenly distributed performance across neighborhoods, may be preferred to assess neighborhood specific heat
island effects.

In this sense, multiobjective reasoning improves fairness and transparency of machine learning systems
(Kusner et al., 2017; Liu et al., 2018). However, nontechnical challenges exist with the practical translation of
these methods to the climate change adaptation context. Multiobjective optimization requires accurate measure-
ment of all relevant metrics. While we have seen that AI can help transform raw data into more usable metrics,
managing multiple metrics creates additional complexity. It will become important to build harmonized datasets
across subpopulations, sectors, or localities and collect metrics that may previously have been only of secondary
interest.
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4 | CONCLUSION

Understanding what and how we are adapting to climate change, within the complex, dynamic system in which adap-
tation strategies are made, will be critical to the successful management of the climate crisis. Adaptation is not readily
reducible to simplified factors that can be fed as an input to standard machine learning methods. It will be important to
have AI augmented systems that generate algorithms to identify novel, subtle patterns in biophysical and social
responses to climate change impacts; generate targeted behavioral intervention strategies; and devise “adaptive” multi-
objective planning and implementation. We can also combine physics-based models with machine learning to ensure
predictions that obey the laws of physics (Bolton & Zanna, 2019; Zhao et al., 2019).

Going forward, raising the interpretability of AI generated results and removing implicit bias are important areas to
consider. To this end, AI-driven analyses must be able to provide explanations that characterize how each feature con-
tributes to a given decision and incorporate feedback of the domain expert. These explanations enable domain experts
to identify issues in the underlying model, including training set bias (Ribeiro et al., 2016) or dependence on non-causal
relationships (Bastani et al., 2017; Lou et al., 2012). They allow the domain expert to incorporate feedback into the
model to ensure it is making decisions in a meaningful way. Moreover, evaluating the performance of the algorithms
across different demographics and locations can reduce the risk of overfitting and help remove unintended AI bias
(Wu et al., 2021).
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