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A single question lies behind the research efforts of both the data visualization and statistical modeling

communities: What are the most effective techniques for identifying and representing latent structure in

data? The problem is that even moderately large collections of data are difficult to mentally process – some

reduction, some more succinct representation, is necessary before the data can be used to guide reasoning.

In spite of the differences in the substrates – graphical and mathematical – from which these representations

are molded, the visualization and statistics communities have arrived at many similar principles for guiding

this reduction. Our work blends ideas from both the modeling and visualization communities to make the

representation of latent structure more accessible and automatic.

Data is never analyzed in a vacuum. Its collection and study is only valuable as far as it helps resolve

important ambiguities in systems of interest. To ground our study, we focus on applications to microbiome

data, seeking representations that we believe will simplify the investigation of a variety of microbiome-related

questions.

The essential contribution of our work is to streamline and democratize the discovery and visualization

of latent structure in the microbiome. Concretely, this involves several lines of study,

• Designing example workflows: There are many possible approaches for a microbiome analysis pipeline,

from raw data to model criticism, but few references for how to choose between options and assemble

a coherent workflow. One effort to provide some basic guideposts is described in section 1.

• Developing software packages: Sometimes the same conceptually complex or time-consuming represen-

tation task appears repeatedly across studies. This has motivated the creation of packages to simplify
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these difficult steps, several of which are reviewed in section 2.

• Distilling relevant literature: Sometimes the barrier to effective analysis is not the implementation of

a technique, but knowledge of which methods are relevant and effective. This is especially the case

for more complex analysis questions, and is the underlying motivation for the studies overviewed in

sections 3 and 4.

Our goal is to empower the microbiome community to make full use of ideas developed in statistics and data

visualization. Indeed, it is one of the ironies data analysis that simple methods can be very labor intensive,

requiring a high degree of user involvement without much guidance, while more sophisticated techniques

have the potential to disappear into the background, allowing scientists to instead focus on problems of

developing and evaluating theories of microbial ecology.

1 Latent variable modeling workflows

Microbiome studies attempt to characterize variation in bacterial abundance profiles across different ex-

perimental conditions [Gilbert et al., 2014]. For example, a study may attempt to describe differences in

bacterial communities between diseased and healthy states or after deliberately induced perturbations [Deth-

lefsen and Relman, 2011, Fukuyama et al., 2017]. Such studies can be illuminating from both basic scientific

and medical perspectives.

In the process, two complementary difficulties arise. First, the data are often high-dimensional, measured

over several hundreds or thousands of types of bacteria. Studying patterns at the level of particular bacteria

is typically uninformative. Second, it can be important to study bacterial abundances in the context of

existing biological knowledge.

Viewed from this perspective, a probabilistic approach emerges as a natural candidate. However, although

probabilistic latent variable models are a cornerstone of modern unsupervised learning, they are rarely applied

in the context of microbiome data analysis, in spite of the evolutionary, temporal, and count structure that

could be directly incorporated through such models.

The work [Sankaran and Holmes, 2018] explores the application of probabilistic latent variable models

to microbiome data, with a focus on Latent Dirichlet Allocation, Nonnegative Matrix Factorization, and

Dynamic Unigram models. To develop guidelines for when different methods are appropriate, we perform a

detailed simulation study. We further illustrate and compare these techniques using the data of Dethlefsen

and Relman [2011], a study on the effects of antibiotics on bacterial community composition.
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Figure 1: We can visualize the simulated time series for a subset of species and compare them with the
observed ones, as a posterior check. Each panel represents one species. The black lines represent the
observed asinh-transformed abundances for a subject over time. The blue and purple dots give the posterior
predictive realizations for these species over time, according to LDA and the Dynamic Unigram model,
respectively.

Model assessment is important for qualifying interpretations, and can guide refinements in subsequent

analyses. Our work proposes novel, visual posterior predictive checks tailored to latent variable models, an

example of which is available in Figure 1. Code for all algorithms, experiments, and visualizations is available

at github.com/krisrs1128/microbiome_plvm. A docker image providing a suitable software environment

for reproducing the analysis is linked from there as well.

One of the primary contributions of this study is to develop the observation that methods popular in text

analysis can be adapted to the microbiome setting in a way that produces useful summaries. We develop the

analogy between these text and microbiome analysis and also draw attention to points where the parallels

break down. For example, topics in document modeling are analogous to communities in microbiome analysis

– these are “prototypical” units which can be used as a point of reference for observed samples. In the same

way that it is common to assign topics like“business” or “politics” to newspaper articles, summarizing

microbiome samples by their essential bacterial signatures can be a useful mental device.

Critical reflection highlights important discrepancies, however. Among the most fundamental is that

unsupervised text analysis techniques are often embedded within automatic systems, for text classification
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or information retrieval, say, which do not require the intervention of a scientific investigator. In contrast,

in microbiome studies, researchers often have control over specific experimental design structure, and collect

and analyze data on a per-study basis. In this setting, success is defined somewhat amorphously as an ability

to describe the structure and function underlying a biological system of interest. The differences between

these fields opens up the possibility for an interesting cross-pollination of ideas, however.

2 Interactive visualization packages

Paralleling our comparison of latent variable modeling techniques, we have evaluated a suite of visualization

methods with the goal of speeding up the cycle from data preparation and modeling to interactive exploration

and back.

Our approaches are encapsulated three publicly available R packages – treelapse, centroidview, and

mvarVis – which encourage data analysts to work at the border between data modeling and visualization,

and more generally empower a wider audience to apply less widely known, but powerful, visualization ideas.

The key contributions of these studies are,

• Proposals for visualizing hierarchically structured or high-dimensional data, based on principles from

the data visualization community.

• The implementation of these proposals in a publicly available R packages.

• Illustrations of the value of interactive data visualization in scientific contexts, through diverse case

studies.

Our treelapse package is motivated by problems that we call tree-structured differential abundance and

differential dynamics [Sankaran and Holmes, 2017a]. In the differential abundance problem, we attempt to

compare the abundances of individual bacteria across experimental conditions – for example, treatment vs.

control or healthy vs. diseased. We call this analysis “tree-structured” because, in practice, researchers

generate interpretations about intermediate taxonomic orders – it is more interesting to discover novel

behavior taxonomic levels between high-order phyla and low-level species. In the tree-structured bacterial

dynamics problem, the goal is to describe changes in bacterial abundances in an environment over time. As

in the differential abundance problem, it is useful if these descriptions can be given at the highest subtree

at which the pattern appears.
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Figure 2: An example application of the treebox interactive display. By drawing a selection on the phyloge-
netic tree, the user has highlighted time series for species from the Ruminoccocus genus.

Our approach is most directly informed by two principles from the data visualization literature: focus-

plus-context and linking [Buja et al., 1996]. From this foundation, we propose three interactive visualization

methods: DOI sankeys, timebox trees, and treeboxes. DOI sankeys alow comparison of the flow of bacterial

abundance across the phylogenetic tree in a way that allows rapid inspection of differential abundance,

using the DOI principle to traverse large swaths of the tree. Timebox trees and treeboxes are designed to

facilitate the study of differential dynamics by linking tree and time series views of bacterial abundances –

visual queries on the tree can be used to highlight time series of interest, and vice versa, see Figure 2, for

example. All methods are available in an R package (http://krisrs1128.github.io/treelapse) and a

video demonstrating their usage is available at https://youtu.be/EcmYBRMVMbI.

The centroidview (http://github.com/krisrs1128/centroidview) and mvarVis (http://github.com/

krisrs1128/mvarVis) packages adapt similar ideas for model inspection, rather than raw data exploration.

Specifically, centroidview is designed to facilitate inspection of subtree centroids, a useful follow-up analysis

of hierarchical clustering results, but which, in the absence of helper utilities, can be complicated to imple-

ment and difficult to visually process. See Figure ?? for an example view. mvarVis, on the other hand, is

directed towards the analogous problem in the analysis of multivariate statistics output, giving an interactive

alternative to printing pages of plots with slightly modified supplementary variables. Both approaches are

algorithm agnostic – they can be applied to generic hierarchical clustering or multivariate analysis output.
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Figure 3: A centroidview display for the antibiotics data of [Dethlefsen and Relman, 2011], demonstrating
the potential for interactive visualization to understand algorithmically discovered latent structure. Each
row in the heatmap corresponds to one species, and each column is a sample. Samples are first grouped
by person, then are sorted by time. The intensity of a cell in the heatmap reflects the abundance of that
species in that sample. The hierarchical clustering tree is printed on the left. Subtree centroids are given in
the panels along the top right, with one panel per subject and one line per subtree. Taxonomic breakdowns
appear in the bottom right. Different colors distinguish different subtrees.

3 Analyzing variation across tables

The simultaneous study of multiple measurement types is a frequently encountered problem in practical

data analysis. It is especially common in microbiome research, where several sources of data – for example,

16S, metagenomic, metabolomic, or transcriptomic data – can be collected on the same physical samples

[Franzosa et al., 2015, McHardy et al., 2013]. There has been a proliferation of proposals for analyzing

such multitable microbiome data, as is often the case when new data sources become more readily available,

facilitating inquiry into new types of scientific questions [Fukuyama et al., 2017, Rahnavard et al.].

However, stepping back from the rush for new methods for multitable analysis in the microbiome litera-

ture, it is worthwhile to recognize the broader landscape of multitable methods, as they have been relevant

in problem domains ranging from economics to robotics to genomics. The purpose of this study is not to

develop new algorithms, but rather to (1) distill the relevant themes across different analysis approaches and

(2) provide concrete workflows for approaching analysis, as a function of ultimate analysis goals and data

characteristics (heterogeneity, dimensionality, sparsity, ...).

For more concrete motivation, we consider data from the WELL-China study, which is focused on the
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relationships between various indicators of wellness [Stanford Prevention Research Center]. In this study,

1969 individuals underwent clinical examinations, filled out wellness surveys (covering topics such as exercise,

sleep, diet, and mental health), and provided stool samples, used for 16S sequencing and metabolomic

analysis. To date, 16S sequencing data is available for 221 of these participants. To limit the scope of our

case study, we focus on the question: How is the distribution of lean and fat mass across the body, measured

using DEXA scans, related to patterns of microbial abundance, measured by 16S sequencing?

We provide summaries about, open-source implementations of, and practical evaluation of methods from

classical ordination, multivariate analysis, probabilistic learning, and optimization. We describe approaches

that usually confined to particular literature areas using shared, statistical notation and highlight certain

similarities in the process – for example, PCA-IV and Bayesian multitask regression were proposed in very

different contexts, but have almost the same goal. This work allows us to offer guidelines for when one model

might be more appropriate than another, some of which are summarized in Table 1 in the appendix.

4 Inference of dynamic regimes

Many studies have been performed to characterize the dynamics and stability of the microbiome across a

range of environmental contexts [Costello et al., 2012]. For example, it is often of interest to identify time

intervals within which certain subsets of taxa have an interesting pattern of behavior. Viewed abstractly,

these problems often have a flavor not just of time series modeling but also of regime detection, a problem

with a rich history across a variety of applications, including speech recognition, finance, EEG analysis, and

geophysics.

In [Sankaran and Holmes, 2017b], we distill the core ideas of different regime detection methods, pro-

vide example applications, and share reproducible code (https://github.com/krisrs1128/microbiome_

regime_detection), making these techniques more accessible to microbiome researchers. Specifically, we re-

analyze the data of Dethlefsen and Relman [2011] using Classification and Regression Trees (CART), Hidden

Markov Models (HMMs), Bayesian nonparametric HMMs, mixtures of Gaussian Processes (GPs), switching

dynamical systems, and multiple changepoint detection. Along the way, we summarize each method, their

relevance to the microbiome, and the tradeoffs associated with using them. Ultimately, our goal is to de-

scribe types of temporal or regime switching structure that can be incorporated into studies of microbiome

dynamics.

The primary contributions of this study are,
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Figure 4: An example smooth from the sticky HDP-HMM, one of the regime detection methods we de-
scribe. Each column corresponds to a single species, each row is a timepoint, and panels represent different
individuals. This view allows a comparison of the effects of antibiotics across different subjects and species
families.

• The relation of the regime detection problem to several statistical frameworks, and a comparison of

the types of interpretation facilitated by each.

• The development of experiments to evaluate the practical utility of these different formulations.

• A catalog of algorithm pseudocode and complete implementations, to serve as a reference for researchers

interested in regime detection.

• The design of and code for static visualizations that can be used to evaluate the results of various

methods.

We set the stage by articulating the scientific problem of interest in more detail and provide a high-level

statistical formulation. To establish reference points for more complex methods, we describe approaches

which are easy to implement, but that fail to incorporate temporal structure. Then, we review and apply

smoothing and mixture modeling techniques relevant to this problem. An example of the type of data

reduction we seek is given in Figure 4. Besides our methodological distillations, our implementations and vi-

sualizations can help researchers decide whether a certain method is appropriate for their use case, depending

on the form of reduction that would be useful and the computational budget alloted.
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5 Outlook

In the thesis reviewed here, we evaluated workflows, developed software, and distilled literature relevant to

discovery and visualization of latent structure in the microbiome. We considered techniques from both formal

modeling and exploratory data analysis, highlighting the ways in which these complementary points of view

can both applied to the process of iterating towards more refined, compact representations of complex data.

This work lays the groundwork for potential projects related to visualization and workflow evaluation

of biological data. More fundamentally, this work has adopted the perspective that the computational

comparison of existing methods, through simulations or illustrations, is often as valuable to data analysts

as the development of novel algorithms. Indeed, we hope these examples can guide the choices faced by

practitioners in their day-to-day work. In this way, we emulate classical statistical theory, giving modern

analogs to classical comparison of experiments. Clearly, much work remains to be done, and the proliferation

of algorithms is both a blessing and a curse: while there are more options available, some possibly tailor-made

to problems of interest, there are few objective guidelines available to inform the actual decision of which to

apply, and there is very little sense of when one approach is optimal. We hope that the foundation laid out

by our studies will be relevant to the creation and evaluation of methods related to data visualization and

latent variable modeling in work to come.
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A Appendix

Property Algorithms Consequence
Analytical
solution

Concat. PCA, CCA, CoIA, MFA,
PTA, Statico / Costatis

Methods with analytical solutions generally run
much faster than those that require iterative up-
dates, optimization, or Monte Carlo sampling. They
tend to be restricted to more classical settings.

Require co-
variance esti-
mate

Concat. PCA, CCA, CoIA, MFA,
PTA, Statico / Costatis

Methods that require estimates of covariance ma-
trices cannot be applied to data with more vari-
ables than samples, and become unstable in high-
dimensional settings.

Sparsity SPLS, Graph-Fused Lasso, Graph-
Fused Lasso

Encouraging sparsity on scores or loadings can result
in more interpretable, results for high-dimensional
data sets. These methods provide automatic variable
selection in the multitable analysis problem.

Tuning
parameters

Sparsity : Graph-Fused Lasso, PMD,
SPLS
Number of Factors: PCA-IV, Red.
Rank Regression, Mixed-Membership
CCA
Prior Parameters: Mixed-
Membership CCA, Bayesian Multi-
task Regression
Kernel : KCCA

Methods with many tuning parameters are often
more expressive than those without any, since it
makes it possible to adapt to different degrees of
model complexity. However, in the absence of auto-
matic tuning strategies, these methods are typically
more difficult to use effectively.

Probabilistic Mixed-Membership CCA, Bayesian
Multitask Regression

Probabilistic techniques provide estimates of uncer-
tainty, along with representations of cross-table co-
variation. This comes at the cost of more involved
computation and difficulty in assessing convergence.

Not Normal
or Nonlinear

KCCA, CCpNA, Mixed-Membership
CCA, Bayesian Multitask Regression

When data are not normal (and are difficult to trans-
form to normality) or there are sources of nonlinear
covariation across tables, it can be beneficial to di-
rectly model this structure. KCCA allows the most
general types of nonlinearity, while the probabilistic
methods are suited to specific count-structure.

>2 Tables Concat. PCA, CCA, MFA, PMD,
KCCA

Methods that allow more than two tables are appli-
cable in a wider range of multitable problems. Note
these are a subset of the cross-table symmetric meth-
ods.

Cross-Table
Symmetry

Concat. PCA, CCA, CoIA, Statico /
Costatis, MFA, PMD, KCCA

Cross-table symmetry refers to the idea that some
methods don’t need a supervised or multitask setup,
where one table contains response variable and the
other requires predictors. The results of these meth-
ods do not change when the two tables are swapped
in the method input.

Table 1: A high-level comparison of the multitable analysis methods discussed in this review. The purpose
of this table is to give rules-of-thumb that can guide practical application, where choices invariabily depend
on the scale and structure of the data, the goals of the analysis, the expected number of future workflow
applications, and availability of programming computation time.
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