
Variational Autoencoders
Discussion + an NLP Application

Kris Sankaran



Probabilistic Inference ↔ Deep Learning
How can we blend,

Rich probabilistic models

- Describe generative process
- Interpretable components
- Quantify uncertainty



Probabilistic Inference ↔ Deep Learning
How can we blend,

Rich probabilistic models Powerful deep learning

- Describe generative process
- Interpretable components
- Quantify uncertainty

- State-of-the art performance
- Adaptable across problem types
- Scales to large datasets
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Optimization
Typical strategies,

- Coordinate updates
This is not reasonable...

- For large data, only update minibatches (Stochastic 
Variational Inference [Hoffman+ 2013])

- For difficult expectations, can appeal to surrogate 
bounds [Jaakola and Jordan 1996]

In Kingma and Welling [2014], the likelihood 
is a single layer MLP.
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- Typically: Coordinate ascent on     , updating one      at a time 

- Nonparametric → Number of parameters grows with the data

- Instead: Learn a mapping from data to latent variables
- Parametric, but very flexible
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- Mean-field updates are intractable
- Idea: Directly optimize using noisy gradients

Minimizing the KL-divergence objective is equivalent to maximizing 
the Evidence Lower Bound (ELBO),

Reconstruction Measures
- Expected complete data log-likelihood
- Expected log-likelihood

Complexity Penalties
- Entropy
- Distance from prior
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- We now have everything in place to perform inference
- It’s better to use stochastic gradients
- Reparameterization facilitates MC sampling
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(1) generative and (2) sequence modeling?

- Sampling / Uncertainty quantification
- Latent representations of full sequences
- Awareness of syntax and grammar



Sequence-to-Sequence Modeling
Bowman+ [2015]: How can we combine the benefits of 
(1) generative and (2) sequence modeling?

- Sampling / Uncertainty quantification
- Latent representations of full sequences
- Awareness of syntax and grammar

Applications

Does this actually work?
これは実際には機能しますか？

Text translation

Speech Recognition

“A B C”

Image Captioning

Four sketches of seashells. [by 
Charles Darwin…]
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VAE Model
- Built from basic VAE approach
- The generator and inference 

networks are now RNNs with 
LSTM units 
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Optimization Hurdles
- The naive implementation fails!
- Decoder is too strong, encoder is too weak

Word DropoutKL Annealing

Downweighting the KL 
early in training gives the 
encoder a chance to 
learn.

Analogy: Pruning in 
decision trees.

Randomly removing 
access weakens the 
decoder.
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Follow-up Research

Incorporating Structure

What happens with more richly structured 
DAGS?

- Johnson+ [2015]
- Karl+ [2016]

Allowing Discreteness

The differentiability constraint is 
limiting, how can we get around it?

- Jang+ [2016]
- Maddison+ [2016]
- Naesseth+ [2017]

Powerful Reformulations

Are there reformulations that are easier to 
optimize, or which obtain tighter bounds?

- Makhzani+ [2015]
- Chen+ [2016]
- Kingma [2016]
- Sønderby+ [2016]



Probabilistic Inference ↔ Deep Learning
At the end of the day...

Develop methods for learning useful representations that are,

- Powerful: Reflect complex structure in real data
- Automatic: Don’t require substantial human effort
- Modular: Easily assembled for new problems
- Inferential: Allow reasoning about uncertainty
- Robust, Data Efficient, Fast, ….
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Derivation of ELBO expressions



High Variance of REINFORCE

Intuition 1: Consider “depth 0” generator and inference networks -- just 
univariate Gaussians. The REINFORCE estimate has form,

which is generally a more complicated function of the gaussian noise than

the pathwise gradient.
Intuition 2: If the variational parameters have additive, orthogonal influence on 
the log-likelihood, then the reparameterization estimate only depends on one 
term, since the rest are differentiated to zero.



Quantitative Evaluation Experiment

Task: Impute the ends of sentences in a Books Corpus

Inference: Beam search (breadth-first search of probable sequences), with or 
without Iterated Conditional Modes (deterministic Gibbs-sampling-like iteration)

Evaluation: Classify true vs. generated sentence completions

http://yknzhu.wixsite.com/mbweb

